
IBM Software

Page 1

33

Lab 07 Using Tekton pipelines for CI/CD of microservices to RedHat
OpenShift Container Platform

Contents	
7.1 Introduction .. 2

7.2 What is all this Tekton stuff? ... 3

7.3 What exactly are we building here? .. 5

7.4 Lab Tasks ... 6

7.4.1 Let’s get started .. 6

7.4.2 Clone the Git repository used for this lab and explore the contents .. 9

7.4.3 Login to OpenShift and create a new project for this lab .. 11

7.4.4 Create an OpenShift Service Account and its security contexts / Roles 12

7.4.5 Create Secret with Login Token for the Service Account .. 14

7.4.6 Create the Tekton “PipelineResources” for the applications build and deployment 16

7.4.7 Create an OpenShift (Kubernetes) persistent volume for the Tekton Tasks to store its data
while executing the pipeline .. 18

7.4.8 Create a Tekton Task to build the Docker image, and push the image to the OpenShift
Image Registry .. 19

7.4.9 Create the Deployment Task ... 21

7.4.10 Create the Pipeline that invokes the build/push and deploy Tasks you created 24

7.4.11 Run the Pipeline ... 26

7.4.12 Access the Tekton Dashboard to view the pipelineRun status and logs 28

7.4.13 Validate the application is deployed and runs as expected .. 31

7.5 Conclusion ... 32

Appendix: Troubleshooting and restarting a failed PipelineRun .. 33

Appendix: SkyTap Tips for labs ... 34

How to use Copy / Paste between local desktop and Skytap VM .. 34

IBM Software

Page 2 IBM Cloud: Application Modernization

7.1 Introduction

In this lab exercise, we will deploy a cloud native application to an OpenShift cluster using the
Tekton pipeline.

This is “Lab 07 – Using Tekton pipelines for CI/CD of microservices to RedHat OpenShift
Container Platform” from an IBM Cloud Pak for Applications & App Modernization Proof of
technology (PoT). The labs are not required to be executed in order. And, you may skip labs, and
only perform the labs that suit your desired learning objectives.

The full set of labs in the PoT are:

Lab01 - Getting started with Docker
Lab02 - Explore RedHat OpenShift Container Platform
Lab03 - Getting started with Kubernetes
Lab04 – Liberty application deployment using Operators
Lab05 – IBM Cloud Pak for Applications - App Modernization using Transformation Advisor
Lab06 – App Modernization with Java EE Microservices and Liberty
Lab07 – Using Tekton pipelines for CI/CD of microservices to RedHat OpenShift Container
Platform

This is a step by step guide to walk you through a quick example of how to create a Tekton pipeline to
automate the build, push, and deploy a simple Node.js application on OpenShift.

This example uses Buildah as the docker build engine. There are other options for the docker build engine,
so it should be noted that this is not the only way to accomplish this task.

IBM Software

Page 3

7.2 What is all this Tekton stuff?

Tekton defines a set of Kubernetes custom resource definitions (CRD) as standard constructs for creating
Continuous Integration and Continuous Delivery (CI/CD) pipelines.

The following is a brief introduction to the Tekton CRDs.

• Task: A sequence of commands (steps) that are run in separate containers in a pod
• Pipeline: A collection of tasks that are executed in a defined order
• PipelineResource: Inputs (e.g. git repo) and outputs (e.g. image registry) to a pipeline
• TaskRun: Runtime representation of an execution of a task
• PipelineRun: Runtime representation of an execution of a pipeline

Let’s look into a bit more detail what makes up a Tekton Pipeline. As explained above, all objects within a
Tekton pipeline are Kubernetes objects.

Pipelines have tasks, which are actually a CRD that runs a container.

Within the task you define steps, which are commands that you will run inside the container.

Pipelines normally have resources associated with them, which can be accessed by all tasks within that
pipeline.

It should be noted that tasks can be used within multiple pipelines, so it's good practice to use pipeline
resources to define the resources used, such as GitHub repositories or docker hub image definitions.

IBM Software

Page 4 IBM Cloud: Application Modernization

IBM Software

Page 5

7.3 What exactly are we building here?

Here, you will deploy a Tekton Pipeline along with Pipeline Resources, and two Task objects. The pipeline
will pull your source code from GitHub and build the Docker image. Once the image is built, the image is
pushed to a local Image repository in OpenShift. Lastly, the pipeline runs the task that deploys this
containerized application to the OpenShift (Kubernetes) runtime.

There are a few things you will need to configure along with the pipeline, such as secrets and a service
account. The lab guides you through all the steps, but you should take some time to learn more about the
security roles that are associated with your service account which allow the service account user to push
images to the OpenShift registry, and execute the pipeline resources

Here is a diagram of what you are going to build in this lab.

This is how I learned how to setup security roles and running deployments in TASKS. This is not required
reading, but I do recommend you review this article. It has some good tips.

https://medium.com/@jerome_tarte/first-pipeline-with-tekton-on-ibm-cloud-pak-for-application-
e82ea7b8a6b1

IBM Software

Page 6 IBM Cloud: Application Modernization

7.4 Lab Tasks

7.4.1 Let’s get started

First, launch the lab environment and login to the VM.

On your laptop/workstation, locate the ICP4Av3.0.0.0 OCP3.11.153 RHEL76 virtual machine

__1. The VM should already be running. If not, Launch the Lab environment by clicking the Run this VM
icon.

__2. After the VM is running, click its icon to access the VM’s desktop.

IBM Software

Page 7

__3. After the VM machine powers on, log with the ibmdemo user using the password passw0rd.

The ICP4Av3.0.0.0 OCP3.11.153 RHEL76 virtual machine running and its Desktop is displayed in
a web browser window.

IBM Software

Page 8 IBM Cloud: Application Modernization

__4. Click Terminal from the bottom of the desktop to open a command line terminal.

You’ll be running in the terminal as the user ibmdemo

IBM Software

Page 9

7.4.2 Clone the Git repository used for this lab and explore the contents

__1. Clone the tekton1-lab GitHub repository to the local VM.
__a. From the terminal window, run the following commands to clone the repo:

 cd ~/student

 git clone https://github.com/kpostreich/tekton1-lab.git

 cd tekton1-lab

 These commands above clone the public repo named tekton1-lab to the local directory under
/home/ibmdemo/student/tekton1-lab directory.

__b. List the directory contents using the “ls” command
 You will find the following key resources:

• Dockerfile – Used to build the NodeJS Express Application

• app.js – The NodeJS Application

• tekton-pipeline (folder) – YAML files to create the Pipeline resources for this lab

In the GitHub repo, you will find all the YAML files in the tekton-pipeline sub folder.

[ibmdemo@icp4a ~]$ cd ~/student
[
ibmdemo@icp4a student]$ git clone https://github.com/kpostreich/tekton1-
lab.git
Cloning into 'tekton1-lab'...
remote: Enumerating objects: 76, done.
remote: Counting objects: 100% (76/76), done.
remote: Compressing objects: 100% (63/63), done.
remote: Total 76 (delta 9), reused 71 (delta 7), pack-reused 0
Unpacking objects: 100% (76/76), done.

ibmdemo@icp4a student]$cd tekton1-lab
[ibmdemo@icp4a tekton1-lab]$

[[ibmdemo@icp4a tekton1-lab]$ ls
app.js Dockerfile package-lock.json readme-images routes views
bin package.json public README.md tekton-pipeline
[ibmdemo@icp4a tekton1-lab]$

IBM Software

Page 10 IBM Cloud: Application Modernization

__2. Enter “cd tekton-pipeline” then type “ls” to go to the lab directory and list the contents

In the tekton1-lab/ab/tekton-pipeline directory, you will find all the YAML files needed to create
the Tekton pipeline resources to build and deploy a simple NodeJS Express application to
OpenShift.

You will find the following key resources:

• service- account.yaml – Creates a new OpenShift Service Account (functional
User) that is used to run the pipelines and access the OpenShift Image registry, and
deploy the application to OpenShift

• pv.yaml – Creates a persistent volume used by the pipeline to store data

• git-resource.yaml – Creates the Pipeline resource that references the input GitHub
repo that contains the source for the application to be built and deployed via the
pipeline

• image-resource.yaml – Creates the Pipeline resource that references the output
Docker image registry where the Docker image will be pushed via the pipeline

• task.yaml – Creates the build and push Tekton tasks
• pipeline.yaml – Creates the pipeline that invokes the tasks defined
• oc-deploy.yaml – Creates the Tekton deployment Task to deploy the application to

OpenShift
• deployment.yaml – Invoked by the oc-deployment task to create the OpenShift

Deployment for the application
• service.yaml - Invoked by the oc-deployment task to create the OpenShift Service

for the application
• pipeline-run.yaml – Runtime execution of the pipeline to build and deploy the app

[ibmdemo@icp4a tekton1-lab]$ cd tekton-pipeline

[ibmdemo@icp4a tekton-pipeline]$ ls

deployment.yaml img-resource.yaml pipeline-run.yaml pv.yaml
service.yaml task.yaml
git-resource.yaml oc-deploy.yaml pipeline.yaml service-account.yaml
taskRun.yaml Templates

IBM Software

Page 11

7.4.3 Login to OpenShift and create a new project for this lab

__1. Type oc login to login to OpenShift. Use ocpadmin for the username and ocpadm1n (note the
“1”, not “i”) for the password

__2. Type “oc new-project tekton-lab” which will create a new project named tekton-lab, and
switch your context to that project

Note: Ensure you create the new project with the name “tekton-lab”. Otherwise,
you will be required to review and modify all YAML files that reference this
OpenShift project (Namespace), prior to running the YAML files to create
the pipeline resources.

ibmdemo@icp4a]$ oc login
Authentication required for https://icp4a.pot.com:8443 (openshift)
Username: ocpadmin
Password:
Login successful.

You have access to the following projects and can switch between them with 'oc
project <projectname>':

 * default
 istio-system
 ta
 Truncated output
Using project "default".

[ibmdemo@icp4a tekton1-lab]$ oc new-project tekton-lab

Now using project "tekton-lab" on server "https://icp4a.pot.com:8443".

You can add applications to this project with the 'new-app' command. For
example, try:

 oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.
[ibmdemo@icp4a tekton1-lab]$

IBM Software

Page 12 IBM Cloud: Application Modernization

7.4.4 Create an OpenShift Service Account and its security contexts / Roles

It is a good OpenShift practice to create a service account for your applications. A service account provides
an identity for processes that run in a Pod.

In this step we will create a new service account with the name “tekton-sa”.

__1. Create a new service account names tekton-sa in the tekton-lab project

oc create serviceaccount tekton-sa -n tekton-lab

__2. Add Privileged access to the Service Account required to run pipelines and deploy apps to
OpenShift

 oc adm policy add-scc-to-user privileged -n tekton-lab -z tekton-sa

The tekton-sa Service Account needs privileged access because the pipeline will be creating pods
when it runs and it needs this authority to create the pods.

NOTE: The “-n” and “-z” params on this command are in reference to the namespace and service
account name.

__3. Add “Edit” role to the Service Account to allow for deployments to OpenShift

 oc adm policy add-role-to-user edit -n tekton-lab -z tekton-sa

The tekton-sa Service Account requires the EDIT role so that it has the proper authority to
make the deployment. This happens within the deployment task during the pipeline
execution.

[ibmdemo@icp4a tekton-pipeline]$ oc create serviceaccount tekton-sa -n tekton-
lab
serviceaccount/tekton-sa created
[ibmdemo@icp4a tekton-pipeline]$

[ibmdemo@icp4a tekton-pipeline]$ oc adm policy add-scc-to-user privileged -n
tekton-lab -z tekton-sa

scc "privileged" added to: ["system:serviceaccount:tekton-lab:tekton-sa"]
[ibmdemo@icp4a tekton-pipeline]$

[ibmdemo@icp4a tekton-pipeline]$ oc adm policy add-role-to-user edit -n
tekton-lab -z tekton-sa

role "edit" added: "tekton-sa"
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 13

__4. Add system:image-builder Role to allow the Service Account to push images to the mage registry.

The pipeline build pods require the system:image-builder role, which allows pushing images to any
image stream in the project using the internal Docker registry.

oc adm policy add-role-to-user system:image-builder -n tekton-lab -z tekton-sa

[ibmdemo@icp4a tekton-pipeline]$ oc adm policy add-role-to-user system:image-
builder -n tekton-lab -z tekton-sa

role "system:image-builder" added: "tekton-sa"
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 14 IBM Cloud: Application Modernization

7.4.5 Create Secret with Login Token for the Service Account

Next, create a NEW Kubernetes secret with the login token for the tekton-sa Service Account.

This is needed by the account for an automated login for the deploy task of the pipeline.

The first command extracts the token from the “tekton-sa-token” secret and store it in a file (token.txt).

The second command creates a new secret using that token. The deploy task will use the token within this
secret to login and issue the deploy command during the pipeline.

__1. Run the following commands to create the new secret for the service account to login to OpenShift
while running the Pipeline.

__a. Get the token from the service account and store it in a file

 oc get secret $(oc get secret -n tekton-lab | grep tekton-sa-token |
head -1 | awk '{print $1}') -n tekton-lab -o jsonpath="{.data.token}"
| base64 -d > token.txt

__b. Verify the token was written to the token.txt file

cat token.txt

__c. Create a new secret with the token extracted from the service account

 oc create secret generic tekton-lab-deployer-secret --from-
literal=user=sa --from-file=token=token.txt -n tekton-lab

[[ibmdemo@icp4a tekton-pipeline]$ cat token.txt
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50I
iwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJ0ZWt0b24tbGFiIiwia3V
iZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6InRla3Rvbi1zYS10b2tlbi1ia
21tcyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJ
0ZWt0b24tc2EiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51a
WQiOiI2YWUxNjg3OS1kMWNiLTExZWEtYTA1YS0wMDUwNTYzODE5M2MiLCJzdWIiOiJzeXN0ZW06c2V
ydmljZWFjY291bnQ6dGVrdG9uLWxhYjp0ZWt0b24tc2EifQ.Ua0hCY8FqeC6k5DqCwTJjDgHhD03uI
EC9qn8COFlddoaQk6_y2YPbYpiMheuyYVSC_TyqvFcbwb4LCPn97tiiGzjIN12CZvAyjng-
89j8Quc2afipWqt4jL-1wJmzxtTNQp_sA0kgYvDpJQC7HMb3kbse_MJOwnIIu5pO-
WWSnKH2z9Qzhh7OBpvIXUwsHPWx0FYyvTTCUwFJ36k6BMPQidLI4AK2GTnfAMPx0VKKIk3nL4YyF7t
1UoTvp-
exETYu1AX2HIJf5ZjckHniGW8OPIJ45q4l7US2kRnhgCGCoEGtF8YQpjBVC28uBOaBJbX1r1IUhS5b
TOVdAirHaJ_JA[ibmdemo@icp4a tekton-pipeline]$ [ibmdemo@icp4a tekton-pipeline]$ oc create secret generic tekton-lab-deployer-
secret --from-literal=user=sa --from-file=token=token.txt -n tekton-lab

secret/tekton-lab-deployer-secret created

[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 15

__d. Verify the new secret

oc describe secret tekton-lab-deployer-secret

[[ibmdemo@icp4a tekton-pipeline]$ oc describe secret tekton-lab-deployer-
secret
Name: tekton-lab-deployer-secret
Namespace: tekton-lab
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
token: 858 bytes
user: 2 bytes
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 16 IBM Cloud: Application Modernization

7.4.6 Create the Tekton “PipelineResources” for the applications build and
deployment

Next, you will define two PipelineResources to be used by the Tekton pipeline

• git-resource.yaml creates a Tekton PipelineResource identifying the GitHub repository from
which the pipeline will pull its data during a build.

• img-resource.yaml creates a Tekton PipelineResource identifying the image location. The tag
for that image must be changed every time the application is updated, and the pipeline executed.

__1. Ensure the Terminal window is in the /home/ibmdemo/student/tekton1-lab/tekton-pipeline
directory, where the Pipeline YAML files are located.

cd /home/ibmdemo/student/tekton1-lab/tekton-pipeline

__2. Review the contents of git-resource.yaml

 cat git-resource.yaml

• The name of the PipelineResource is tekton1-git

• The source type is “git”

• The url to the source git repo is defined in the “url” parameter.

Note: Do NOT MODIFY the YAML for this lab!

[ibmdemo@icp4a tekton-pipeline]$ cat git-resource.yaml
apiVersion: tekton.dev/v1alpha1
kind: PipelineResource
metadata:
 name: tekton1-git
spec:
 type: git
 params:
 - name: revision
 value: master
 - name: url
 value: https://github.com/kpostreich/tekton1-lab.git
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 17

__3. Review the contents of img-resource.yaml

 cat img-resource.yaml

• The name of the PipelineResource is tekton-image

• The type is “image”

• The url parameter defines the location of the image registry where the built image will be
pushed during the execution of the pipeline.

Note: Do NOT MODIFY the YAML for this lab!

__4. Run the following commands to create the PipelineResources using the YAML files

 oc create -f git-resource.yaml

 oc create -f img-resource.yaml

__5. List the new PipelineResources

 oc get pipelineresources

[ibmdemo@icp4a tekton-pipeline]$ cat img-resource.yaml

apiVersion: tekton.dev/v1alpha1
kind: PipelineResource
metadata:
 name: tekton1-image
spec:
 type: image
 params:
 - name: url
 value: docker-registry.default.svc:5000/tekton-lab/tekton1:latest
[ibmdemo@icp4a tekton-pipeline]$

[[ibmdemo@icp4a tekton-pipeline]$ oc create -f git-resource.yaml

pipelineresource.tekton.dev/tekton1-git created

[ibmdemo@icp4a tekton-pipeline]$ oc create -f img-resource.yaml

pipelineresource.tekton.dev/tekton1-image created
[ibmdemo@icp4a tekton-pipeline]$

[ibmdemo@icp4a tekton-pipeline]$ oc get pipelineresources
NAME AGE
tekton1-git 2m
tekton1-image 2m
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 18 IBM Cloud: Application Modernization

7.4.7 Create an OpenShift (Kubernetes) persistent volume for the Tekton Tasks
to store its data while executing the pipeline

The Tekton PipelineRun request storage through a Persistent Volume Claim (PVC). The PVC is backed by
a Persistent Volume (PV).

In the lab environment, the PV is created using the pv.yaml file. This PV is defined as HostPath, and
references /var/lib/containers path where the privileged Service Account has access.

The Tekton Task that you will create later in the lab references this volume for storage during the build
steps.

__1. Review the pv.yaml file that is used to create the persistent volume that Tekton Task requires

 cat pv.yaml

__2. Run the pv.yaml to create the persistent volume defined above, and verify it is created as expected

 oc create -f ./pv.yaml

 oc get pv pv0001

[ibmdemo@icp4a tekton-pipeline]$ cat pv.yaml
kind: PersistentVolume
apiVersion: v1
metadata:
 name: pv0001
spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/var/lib/containers"
 persistentVolumeReclaimPolicy: Retain
[ibmdemo@icp4a tekton-pipeline]$

ibmdemo@icp4a tekton-pipeline]$ oc create -f ./pv.yaml

persistentvolume/pv0001 created
[ibmdemo@icp4a tekton-pipeline]$

[ibmdemo@icp4a tekton-pipeline]$ oc get pv pv0001
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE
pv0001 5Gi RWO Retain Available 2m
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 19

7.4.8 Create a Tekton Task to build the Docker image, and push the image to
the OpenShift Image Registry

Recap:

You have created the PipelineResources, which define the input and output for the build.

You have created a Service account with the proper privileges and roles, and credentials to run the pipeline,
push images to the image registry, and deploy pods to OpenShift.

Now you are ready to create the actual Tekton Task, with two steps:

• build the docker image from the source GitHub repo

• pushes the image to the OpenShift image registry

Of course, there are several ways to build a docker image inside a task (docker command, kaniko …).

For this lab, you will use buildah. (https://buildah.io/)

Buildah is a command-line tool for building Open Container Initiative-compatible (that means Docker- and
Kubernetes-compatible, too) images quickly and easily.

Buildah is easy to incorporate into scripts and build pipelines.

__3. Review the task.yaml file using gedit command. DO NOT MODIFY THE FILE

 gedit task.yaml

The Task resource defines its spec:

• The input resource
• The output resource
• Local parameters used during the execution of the task
• Steps. In this example, “build” and “push” is described
• The image used for the task execution. here, it is quay.io/buildah/stable.
• Its environment. The env variables are defined, based on configmap and/or secret. Here, a secret is

used to define the authentication information.
• The commands to execute in the “build” and “push” steps. The first one builds the image, the second

pushes it to the target repository.

In general, steps are used to isolate individual commands, and illustrated below.

IBM Software

Page 20 IBM Cloud: Application Modernization

__a. Close the Gedit editor when you have finished reviewing the contents.

 DO NOT SAVE ANY CHANGES!

__4. Create the Task, using the task.yaml file, then list the new “buildah” task.
 oc create -f ./task.yaml

 oc get tasks

[ibmdemo@icp4a tekton-pipeline]$ oc create -f ./task.yaml

task.tekton.dev/buildah created

bmdemo@icp4a tekton-pipeline]$ oc get tasks
NAME AGE
buildah 1m

IBM Software

Page 21

7.4.9 Create the Deployment Task

To manage the deployment of this simple Node.js Express application, tasks are needed to specify a
Deployment (controller for pods) and a Service definition in OpenShift.

The oc-deployment.yaml file defines a Tekton Task that in turn invokes a command to run the
deployment.yaml to create the deployment and service for the sample application. To enable this action,
each task will define with a step using the quay.io/openshift/origin-cli:latest docker image.

__1. Review the oc-deploy.yaml file using cat command. DO NOT MODIFY THE FILE

 cat oc-deploy.yaml

IBM Software

Page 22 IBM Cloud: Application Modernization

__2. Review the deployment.yaml file that is used to create the Deployment and Service for the
application, and is invoked by deploy-cm Task you reviewed in the previous step

 cat deployment.yaml

 The Deployment specifies 1 replica (pod), and is deployed using the Docker image that is pushed
to the OpenShift image registry.

 The Service defines how the application will be accessed

IBM Software

Page 23

__3. Run the oc-deploy.yaml to create the Tekton Deployment Task. Then list the new task

 oc create -f ./oc-deploy.yaml

 oc get tasks

[ibmdemo@icp4a tekton-pipeline]$ oc create -f ./oc-deploy.yaml
task.tekton.dev/deploy-cm created

[ibmdemo@icp4a tekton-pipeline]$ oc get tasks
NAME AGE
buildah 47m
deploy-cm 7s

IBM Software

Page 24 IBM Cloud: Application Modernization

7.4.10 Create the Pipeline that invokes the build/push and deploy Tasks you
created

Now that that tasks have been created, they can be incorporated and orchestrated in a Pipeline. The
pipeline in the lab does the following:

• First, the pipeline runs the buildah task that performs the build and push steps

• Once the build-push task completes, the deploy-cm task is executed to deploy the app to OpenShift

• The pipeline orchestrates the order of the task execution using the runAfter tag in the pipeline
definition. If the build-push task fails, the deploy task will not run.

__1. Review the pipeline.yaml file
 cat pipeline.yaml

Snippet showing the tasks in the pipeline.yml file

IBM Software

Page 25

__2. Use the pipeline.yaml file to Create the pipeline. Then list the new pipeline
 oc create -f ./pipeline.yaml
oc get pipelines

[ibmdemo@icp4a tekton-pipeline]$ oc create -f ./pipeline.yaml

pipeline.tekton.dev/tutorial-pipeline created

[ibmdemo@icp4a tekton-pipeline]$ oc get pipelines
NAME AGE
tutorial-pipeline 1m
[ibmdemo@icp4a tekton-pipeline]$

IBM Software

Page 26 IBM Cloud: Application Modernization

7.4.11 Run the Pipeline

To execute the pipeline, a PipelineRun artefact should be created.

A PipelineRun starts a Pipeline and ties it to the Git and image resources that should be used for the
specific invocation. It automatically creates and starts the TaskRuns for each Task in the Pipeline.

__1. Review the pipeline-run.yaml file
 cat pipeline-run.yaml

The PipelineRun identifies the pipeline to run, and provides the resources and parameters used
during its execution. It also defines the Service Account that runs the pipeline.

__2. Execute the PipelineRun using the YAML file
 oc create -f ./pipeline-run.yaml

 Next, let’s do some basic queries to ensure the pipeline is executing. Then, you will launch
the Tekton dashboard to view the PipelineRun.

[ibmdemo@icp4a tekton-pipeline]$ oc create -f ./pipeline-run.yaml

pipelinerun.tekton.dev/tutorial-pipeline-run-1 created

IBM Software

Page 27

__3. First, verify that the tasks persistent volume claim (PVC) is bound to the persistent volume
(PV) that you created for the lab.
 oc get pvc

Note: If the PVC is not bound, the pipeline will hang and wait for storage to be available.

__4. Now, check that the pipeline pod is running, and there the READY state of the containers is

not stuck at 0/5. The READY state will continue to progress as the build tasks execute and
complete.
 oc get pods

A fully completed and successful pipelineRun will result in the pod states below.
Note: It may take 10 minutes to run the pipeline, as it pulls the required docker images from
DockerHub, builds the docker image for the app, pushes the image to the OpenShift image
registry, and deploys the application.

• The tekton1-<pod ID> is the application that was deployed via the pipeline.

• The tutorial-pipeline-run-1-build-push pod is the pod that ran the build/push tasks

• The tutorial-pipeline-run-1-deploy-to-cluster pod is the pod that ran the deploy
task

[ibmdemo@icp4a tekton-pipeline]$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
tutorial-pipeline-run-1-pvc Bound pv0001 5Gi RWO
4s

[ibmdemo@icp4a tekton-pipeline]$ oc get pods
NAME READY STATUS
RESTARTS AGE
tutorial-pipeline-run-1-build-push-4jpqb-pod-c33d32 4/5 Running 0
1m

NAME READY STATUS
RESTARTS AGE
tekton1-76dcb78d7d-nh4c8 1/1 Running
0 59s
tutorial-pipeline-run-1-build-push-4jpqb-pod-c33d32 0/5
Completed 0 4m
tutorial-pipeline-run-1-deploy-to-cluster-g9r5s-pod-f4f00b 0/2
Completed 0 1m4s

[ibmdemo@icp4a tekton-pipeline]$ oc get pods
NAME READY STATUS
RESTARTS AGE
tekton1-76dcb78d7d-nh4c8 1/1 Running
tutorial-pipeline-run-1-build-push-4jpqb-pod-c33d32 0/5 Completed
tutorial-pipeline-run-1-deploy-to-cluster-g9r5s-pod-f4f00b 0/2 Completed

IBM Software

Page 28 IBM Cloud: Application Modernization

7.4.12 Access the Tekton Dashboard to view the PipelineRun status and logs

The Tekton Dashboard is available in the lab environment. The Tekton Dashboard is a general purpose,
web-based UI for Tekton Pipelines and Tekton triggers resources. It allows users to manage and view
Tekton resource creation, execution, and completion.

Note: If the Pipeline fails, refer to the “Appendix: troubleshooting” section of this lab to
learn how to view the logs and cleanup and restart a failed pipeline.

Note: If you modified any of the pipeline YAML files or used different names, namespaces,
etc, you may have to update YAML files to fix the issues if you changed the names,
namespaces, etc that are coded in the YAML files.

__1. Access the Tekton Dashboard

__a. Click the Chrome browser icon located at the bottom of the VM window

__b. From the browser, click the Tekton Dashboard Bookmark located on the bookmark toolbar

__2. From the Tekton Dashboard, use the Namespace pulldown menu, and select the tekton-lab
namespace to filter the resources to the namespace used in the lab.

IBM Software

Page 29

__3. From the Tekton Dashboard, click the PipelineRuns menu option to view your PipelineRun. Then
click on the tutorial-pipeline-run-1 pipeline to view the details.

__4. Expand the build-push Task.

IBM Software

Page 30 IBM Cloud: Application Modernization

__5. Then you can click the build step or the push step to see the logs and status.

__6. Once the build-push tasks complete, the deploy-to-cluster task will execute to deploy the
application. You can view any of the logs for the tasks.

A successful PipelineRun will look like this:

IBM Software

Page 31

7.4.13 Validate the application is deployed and runs as expected

Upon successful completion of the pipeline, the sample NodeJS Express application is deployed to
OpenShift.

In this section, you will view the application resources that were deployed to OpenShift and validate the
sample application runs as expected.

__1. Use the following commands to verify the application is deployed and the pod is running

 oc get deployments

 oc get pods | grep tekton1

__2. Use the following commands to verify the service was created

 oc get services

__3. Test the application from the web browser. Use the CLUSTER-IP and PORT as the URL

 http://<CLUSTER-IP>:3000

[ibmdemo@icp4a tekton-pipeline]$ oc get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
tekton1 1 1 1 1

[ibmdemo@icp4a tekton-pipeline]$ oc get pods | grep tekton1

tekton1-76dcb78d7d-scfls 1/1 Running

[ibmdemo@icp4a tekton-pipeline]$ oc get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
tekton1-svc LoadBalancer 172.30.10.81 172.29.215.72,172.29.215.72 3000:30580/TCP

IBM Software

Page 32 IBM Cloud: Application Modernization

7.5 Conclusion

Congratulations! You have completed the lab and are on your way to developing robust pipelines for CI/CD
of your application deployments using containers and RedHat OpenShift Container Platform.

In this lab, you learned how to create the Tekton resources to automate CI/CD for microservices deployed
to OpenShift.

• PipelineResource
• Task
• Pipeline
• PipelineRun

You learned how to configure a Service Account with proper authorization and roles to be able to push
Docker images to an image registry and authenticate to OpenShift and deploy the application via the Tekton
Pipeline.

End of Lab 07: Using Tekton pipelines for CI/CD of microservices to
RedHat OpenShift Container Platform

IBM Software

Page 33

Appendix: Troubleshooting and restarting a failed PipelineRun

If any of the tasks fail in the pipeline, you will need to review the logs from the failed task to determine the
issue. Once you resolve the problem, you will need to execute a new PipelineRun.

Tip: View the logs using the Tekton Dashboard you saw in the lab to determine the failure message.

Here is my advice for re-running a new pipeline after a failed attempt.

Note that every pipeline must have a unique name. The name is hard coded in the YAML files used to
create the pipeline resources.

__1. Run the following commands to cleanup a failed PipelineRun and start a new one

 oc delete -f ./pipeline-run.yaml

 Note: The deployment and service resources may not exist, depending on where the pipeline
failed. So, the delete command may state “not found”. Ignore the message

 oc delete deployment tekton1

 oc delete service tekton1-svc

 oc create -f ./pipeline-run.yaml

IBM Software

Page 34 IBM Cloud: Application Modernization

Appendix: SkyTap Tips for labs
	
How to use Copy / Paste between local desktop and Skytap VM

Using copy / Paste capabilities between the lab document (PDF) on your local workstation to the VM is a
good approach to more efficiently work through a lab, while reducing the typing errors that often occur
when manually entering data.

__1. In SkyTap, you will find that any text copied to the clipboard on your local workstation is not available to be
pasted into the VM on SkyTap. So how can you easily accomplish this?

__a. First copy the text you intend to paste, from the lab document, to the clipboard on your local
workstation, as you always have (CTRL-C)

__b. Return to the SkyTap environment and click on the Clipboard at the top of the SkyTap session
window.

__c. Use CTRL-V to paste the content into the Copy/paste VM clipboard. Or use the paste menu item that
is available in the dialog, when you right mouse click in the clipboard text area.

__d. Once the text is pasted, just navigate away to the VM window where you want to paste the content.
Then, use CTRL-C, or right mouse click & us the paste menu item to paste the content.

IBM Software

Page 35

__e. The text is pasted into the VM

Note: The very first time you do this, if the text does not paste, you may have to paste the contents into the
Skytap clipboard twice. This is a known Skytap issue. It only happens on the 1st attempt to copy / paste into
Skytap.

