
Kubernetes bootcamp:
Deploying and scaling

microservices

WiFi: OReilly18
Password: velocity

Be kind to the WiFi!
Don't use your hotspot.
Don't stream videos or download big files during the workshop.
Thank you!

Slides: http://k8s2d.container.training/

1 / 695

https://www.youtube.com/watch?v=h16zyxiwDLY
http://k8s2d.container.training/

Intros

Hello! I'm Jérôme (@jpetazzo, Enix SAS)

The workshop will run from 9am to 5pm

Lunch will be served at 12:30pm (in Rhinelander)

Morning and afternoon breaks are scheduled at 10:30am and 3pm (in Sutton Foyer)

Feel free to interrupt for questions at any time

Especially when you see full screen container pictures!

Live feedback, questions, help: Gitter

2 / 695

https://twitter.com/jpetazzo
https://gitter.im/jpetazzo/training-20180930-nyc

A brief introduction

This was initially written by Jérôme Petazzoni to support in-person, instructor-led
workshops and tutorials

Credit is also due to multiple contributors — thank you!

You can also follow along on your own, at your own pace

We included as much information as possible in these slides

We recommend having a mentor to help you ...

... Or be comfortable spending some time reading the Kubernetes documentation ...

... And looking for answers on StackOverflow and other outlets

3 / 695

https://twitter.com/jpetazzo
https://github.com/jpetazzo/container.training/graphs/contributors
https://kubernetes.io/docs/
http://stackoverflow.com/questions/tagged/kubernetes

About these slides

All the content is available in a public GitHub repository:

https://github.com/jpetazzo/container.training

You can get updated "builds" of the slides there:

http://container.training/

4 / 695

https://github.com/jpetazzo/container.training
http://container.training/

About these slides

All the content is available in a public GitHub repository:

https://github.com/jpetazzo/container.training

You can get updated "builds" of the slides there:

http://container.training/

Typos? Mistakes? Questions? Feel free to hover over the bottom of the slide ...

ɰ Try it! The source file will be shown and you can view it on GitHub and fork and edit it.

5 / 695

https://github.com/jpetazzo/container.training
http://container.training/

Extra details

This slide has a little magnifying glass in the top left corner

This magnifying glass indicates slides that provide extra details

Feel free to skip them if:

you are in a hurry

you are new to this and want to avoid cognitive overload

you want only the most essential information

You can review these slides another time if you want, they'll be waiting for you ☺

6 / 695

Chapter 1

Pre-requirements

Our sample application

Identifying bottlenecks

Kubernetes concepts

Declarative vs imperative

7 / 695

Chapter 2

Kubernetes network model

First contact with kubectl

Setting up Kubernetes

Running our first containers on Kubernetes

Exposing containers

8 / 695

Chapter 3

Deploying a self-hosted registry

Exposing services internally

Exposing services for external access

Accessing the API with kubectl proxy

Controlling the cluster remotely

Accessing internal services

The Kubernetes dashboard

Security implications of kubectl apply

Scaling a deployment

9 / 695

Chapter 4

Daemon sets

Updating a service through labels and selectors

Rolling updates

Healthchecks

Accessing logs from the CLI

Centralized logging

10 / 695

Chapter 5

Managing stacks with Helm

Namespaces

Network policies

Authentication and authorization

11 / 695

Chapter 6

Exposing HTTP services with Ingress resources

Collecting metrics with Prometheus

12 / 695

Chapter 7

Volumes

Building images with the Docker Engine

Building images with Kaniko

Managing configuration

13 / 695

Chapter 8

Owners and dependents

Stateful sets

Highly available Persistent Volumes

14 / 695

Chapter 9

Next steps

Links and resources

Final words

15 / 695

16 / 695

Pre-requirements

Previous section | Back to table of contents | Next section

17 / 695

Pre-requirements
Be comfortable with the UNIX command line

navigating directories

editing files

a little bit of bash-fu (environment variables, loops)

Some Docker knowledge

docker run, docker ps, docker build

ideally, you know how to write a Dockerfile and build it
(even if it's a FROM line and a couple of RUN commands)

It's totally OK if you are not a Docker expert!

18 / 695

Tell me and I forget.
Teach me and I remember.

Involve me and I learn.

Misattributed to Benjamin Franklin

(Probably inspired by Chinese Confucian philosopher Xunzi)

19 / 695

https://www.barrypopik.com/index.php/new_york_city/entry/tell_me_and_i_forget_teach_me_and_i_may_remember_involve_me_and_i_will_lear/

Hands-on sections

The whole workshop is hands-on

We are going to build, ship, and run containers!

You are invited to reproduce all the demos

All hands-on sections are clearly identified, like the gray rectangle below

Exercise

This is the stuff you're supposed to do!

Go to http://k8s2d.container.training/ to view these slides

Join the chat room: Gitter

20 / 695

http://k8s2d.container.training/
https://gitter.im/jpetazzo/training-20180930-nyc

Where are we going to run our containers?
21 / 695

22 / 695

You get a cluster of cloud VMs

Each person gets a private cluster of cloud VMs (not shared with anybody else)

They'll remain up for the duration of the workshop

You should have a little card with login+password+IP addresses

You can automatically SSH from one VM to another

The nodes have aliases: node1, node2, etc.

23 / 695

Why don't we run containers locally?

Installing that stuff can be hard on some machines

(32 bits CPU or OS... Laptops without administrator access... etc.)

"The whole team downloaded all these container images from the WiFi!
... and it went great!" (Literally no-one ever)

All you need is a computer (or even a phone or tablet!), with:

an internet connection

a web browser

an SSH client

24 / 695

SSH clients

On Linux, OS X, FreeBSD... you are probably all set

On Windows, get one of these:

putty
Microsoft Win32 OpenSSH
Git BASH
MobaXterm

On Android, JuiceSSH (Play Store) works pretty well

Nice-to-have: Mosh instead of SSH, if your internet connection tends to lose packets

25 / 695

http://www.putty.org/
https://github.com/PowerShell/Win32-OpenSSH/wiki/Install-Win32-OpenSSH
https://git-for-windows.github.io/
http://mobaxterm.mobatek.net/
https://juicessh.com/
https://play.google.com/store/apps/details?id=com.sonelli.juicessh
https://mosh.org/

What is this Mosh thing?

You don't have to use Mosh or even know about it to follow along.
We're just telling you about it because some of us think it's cool!

Mosh is "the mobile shell"

It is essentially SSH over UDP, with roaming features

It retransmits packets quickly, so it works great even on lossy connections

(Like hotel or conference WiFi)

It has intelligent local echo, so it works great even in high-latency connections

(Like hotel or conference WiFi)

It supports transparent roaming when your client IP address changes

(Like when you hop from hotel to conference WiFi)

26 / 695

Using Mosh

To install it: (apt|yum|brew) install mosh

It has been pre-installed on the VMs that we are using

To connect to a remote machine: mosh user@host

(It is going to establish an SSH connection, then hand off to UDP)

It requires UDP ports to be open

(By default, it uses a UDP port between 60000 and 61000)

27 / 695

Connecting to our lab environment

Exercise

Log into the first VM (node1) with your SSH client

Check that you can SSH (without password) to node2:

ssh node2

Type exit or ^D to come back to node1

If anything goes wrong — ask for help!

28 / 695

Doing or re-doing the workshop on your own?

Use something like Play-With-Docker or Play-With-Kubernetes

Zero setup effort; but environment are short-lived and might have limited resources

Create your own cluster (local or cloud VMs)

Small setup effort; small cost; flexible environments

Create a bunch of clusters for you and your friends (instructions)

Bigger setup effort; ideal for group training

29 / 695

http://play-with-docker.com/
https://training.play-with-kubernetes.com/
https://github.com/jpetazzo/container.training/tree/master/prepare-vms

We will (mostly) interact with node1 only

These remarks apply only when using multiple nodes, of course.

Unless instructed, all commands must be run from the first VM, node1

We will only checkout/copy the code on node1

During normal operations, we do not need access to the other nodes

If we had to troubleshoot issues, we would use a combination of:

SSH (to access system logs, daemon status...)

Docker API (to check running containers and container engine status)

30 / 695

Terminals

Once in a while, the instructions will say:
"Open a new terminal."

There are multiple ways to do this:

create a new window or tab on your machine, and SSH into the VM;

use screen or tmux on the VM and open a new window from there.

You are welcome to use the method that you feel the most comfortable with.

31 / 695

Tmux cheatsheet

Tmux is a terminal multiplexer like screen.

You don't have to use it or even know about it to follow along.
But some of us like to use it to switch between terminals.
It has been preinstalled on your workshop nodes.

Ctrl-b c → creates a new window
Ctrl-b n → go to next window
Ctrl-b p → go to previous window
Ctrl-b " → split window top/bottom
Ctrl-b % → split window left/right
Ctrl-b Alt-1 → rearrange windows in columns
Ctrl-b Alt-2 → rearrange windows in rows
Ctrl-b arrows → navigate to other windows
Ctrl-b d → detach session
tmux attach → reattach to session

32 / 695

https://en.wikipedia.org/wiki/Tmux

Versions installed

Kubernetes 1.12.0
Docker Engine 18.06.1-ce
Docker Compose 1.21.1

Exercise

Check all installed versions:

kubectl version
docker version
docker-compose -v

33 / 695

Kubernetes and Docker compatibility

Kubernetes 1.12.x only validates Docker Engine versions 1.11.2 to 1.13.1 and 17.03.x

34 / 695

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.12.md#external-dependencies

Kubernetes and Docker compatibility

Kubernetes 1.12.x only validates Docker Engine versions 1.11.2 to 1.13.1 and 17.03.x

Are we living dangerously?

35 / 695

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.12.md#external-dependencies

Kubernetes and Docker compatibility

Kubernetes 1.12.x only validates Docker Engine versions 1.11.2 to 1.13.1 and 17.03.x

Are we living dangerously?

"Validates" = continuous integration builds

The Docker API is versioned, and offers strong backward-compatibility

(If a client uses e.g. API v1.25, the Docker Engine will keep behaving the same way)

36 / 695

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.12.md#external-dependencies

37 / 695

Our sample application

Previous section | Back to table of contents | Next section

38 / 695

Our sample application

We will clone the GitHub repository onto our node1

The repository also contains scripts and tools that we will use through the workshop

Exercise

Clone the repository on node1:

git clone https://github.com/jpetazzo/container.training

(You can also fork the repository on GitHub and clone your fork if you prefer that.)

39 / 695

Downloading and running the application

Let's start this before we look around, as downloading will take a little time...

Exercise

Go to the dockercoins directory, in the cloned repo:

cd ~/container.training/dockercoins

Use Compose to build and run all containers:

docker-compose up

Compose tells Docker to build all container images (pulling the corresponding base
images), then starts all containers, and displays aggregated logs.

40 / 695

More detail on our sample application

Visit the GitHub repository with all the materials of this workshop:
https://github.com/jpetazzo/container.training

The application is in the dockercoins subdirectory

Let's look at the general layout of the source code:

there is a Compose file docker-compose.yml ...

... and 4 other services, each in its own directory:

rng = web service generating random bytes
hasher = web service computing hash of POSTed data
worker = background process using rng and hasher
webui = web interface to watch progress

41 / 695

https://github.com/jpetazzo/container.training
https://github.com/jpetazzo/container.training/tree/master/dockercoins
https://github.com/jpetazzo/container.training/blob/master/dockercoins/docker-compose.yml

Compose file format version

Particularly relevant if you have used Compose before...

Compose 1.6 introduced support for a new Compose file format (aka "v2")

Services are no longer at the top level, but under a services section

There has to be a version key at the top level, with value "2" (as a string, not an
integer)

Containers are placed on a dedicated network, making links unnecessary

There are other minor differences, but upgrade is easy and straightforward

42 / 695

Service discovery in container-land

We do not hard-code IP addresses in the code

We do not hard-code FQDN in the code, either

We just connect to a service name, and container-magic does the rest

(And by container-magic, we mean "a crafty, dynamic, embedded DNS server")

43 / 695

Example in worker/worker.py

redis = Redis("redis")

def get_random_bytes():
 r = requests.get("http://rng/32")
 return r.content

def hash_bytes(data):
 r = requests.post("http://hasher/",
 data=data,
 headers={"Content-Type": "application/octet-stream"})

(Full source code available here)

44 / 695

https://github.com/jpetazzo/container.training/blob/8279a3bce9398f7c1a53bdd95187c53eda4e6435/dockercoins/worker/worker.py#L17

Links, naming, and service discovery

Containers can have network aliases (resolvable through DNS)

Compose file version 2+ makes each container reachable through its service name

Compose file version 1 did require "links" sections

Network aliases are automatically namespaced

you can have multiple apps declaring and using a service named database

containers in the blue app will resolve database to the IP of the blue database

containers in the green app will resolve database to the IP of the green database

45 / 695

What's this application?
46 / 695

What's this application?

It is a DockerCoin miner! ˙ɜ̏г

47 / 695

What's this application?

It is a DockerCoin miner! ˙ɜ̏г

No, you can't buy coffee with DockerCoins

48 / 695

What's this application?

It is a DockerCoin miner! ˙ɜ̏г

No, you can't buy coffee with DockerCoins

How DockerCoins works:

worker asks to rng to generate a few random bytes

worker feeds these bytes into hasher

and repeat forever!

every second, worker updates redis to indicate how many loops were done

webui queries redis, and computes and exposes "hashing speed" in your browser

49 / 695

Our application at work

On the left-hand side, the "rainbow strip" shows the container names

On the right-hand side, we see the output of our containers

We can see the worker service making requests to rng and hasher

For rng and hasher, we see HTTP access logs

50 / 695

Connecting to the web UI

"Logs are exciting and fun!" (No-one, ever)

The webui container exposes a web dashboard; let's view it

Exercise

With a web browser, connect to node1 on port 8000

Remember: the nodeX aliases are valid only on the nodes themselves

In your browser, you need to enter the IP address of your node

A drawing area should show up, and after a few seconds, a blue graph will appear.

51 / 695

Why does the speed seem irregular?

It looks like the speed is approximately 4 hashes/second

Or more precisely: 4 hashes/second, with regular dips down to zero

Why?

52 / 695

Why does the speed seem irregular?

It looks like the speed is approximately 4 hashes/second

Or more precisely: 4 hashes/second, with regular dips down to zero

Why?

The app actually has a constant, steady speed: 3.33 hashes/second
(which corresponds to 1 hash every 0.3 seconds, for reasons)

Yes, and?

53 / 695

The reason why this graph is not awesome

The worker doesn't update the counter after every loop, but up to once per second

The speed is computed by the browser, checking the counter about once per second

Between two consecutive updates, the counter will increase either by 4, or by 0

The perceived speed will therefore be 4 - 4 - 4 - 0 - 4 - 4 - 0 etc.

What can we conclude from this?

54 / 695

The reason why this graph is not awesome

The worker doesn't update the counter after every loop, but up to once per second

The speed is computed by the browser, checking the counter about once per second

Between two consecutive updates, the counter will increase either by 4, or by 0

The perceived speed will therefore be 4 - 4 - 4 - 0 - 4 - 4 - 0 etc.

What can we conclude from this?

"I'm clearly incapable of writing good frontend code!" π — Jérôme

55 / 695

Stopping the application

If we interrupt Compose (with ^C), it will politely ask the Docker Engine to stop the app

The Docker Engine will send a TERM signal to the containers

If the containers do not exit in a timely manner, the Engine sends a KILL signal

Exercise

Stop the application by hitting ^C

56 / 695

Stopping the application

If we interrupt Compose (with ^C), it will politely ask the Docker Engine to stop the app

The Docker Engine will send a TERM signal to the containers

If the containers do not exit in a timely manner, the Engine sends a KILL signal

Exercise

Stop the application by hitting ^C

Some containers exit immediately, others take longer.

The containers that do not handle SIGTERM end up being killed after a 10s timeout. If we
are very impatient, we can hit ^C a second time!

57 / 695

Restarting in the background

Many flags and commands of Compose are modeled after those of docker

Exercise

Start the app in the background with the -d option:

docker-compose up -d

Check that our app is running with the ps command:

docker-compose ps

docker-compose ps also shows the ports exposed by the application.

58 / 695

Viewing logs

The docker-compose logs command works like docker logs

Exercise

View all logs since container creation and exit when done:

docker-compose logs

Stream container logs, starting at the last 10 lines for each container:

docker-compose logs --tail 10 --follow

Tip: use ^S and ^Q to pause/resume log output.

59 / 695

Scaling up the application

Our goal is to make that performance graph go up (without changing a line of code!)

60 / 695

Scaling up the application

Our goal is to make that performance graph go up (without changing a line of code!)

Before trying to scale the application, we'll figure out if we need more resources

(CPU, RAM...)

For that, we will use good old UNIX tools on our Docker node

61 / 695

Looking at resource usage

Let's look at CPU, memory, and I/O usage

Exercise

run top to see CPU and memory usage (you should see idle cycles)

run vmstat 1 to see I/O usage (si/so/bi/bo)
(the 4 numbers should be almost zero, except bo for logging)

We have available resources.

Why?
How can we use them?

62 / 695

Scaling workers on a single node

Docker Compose supports scaling
Let's scale worker and see what happens!

Exercise

Start one more worker container:

docker-compose up -d --scale worker=2

Look at the performance graph (it should show a x2 improvement)

Look at the aggregated logs of our containers (worker_2 should show up)

Look at the impact on CPU load with e.g. top (it should be negligible)

63 / 695

Adding more workers

Great, let's add more workers and call it a day, then!

Exercise

Start eight more worker containers:

docker-compose up -d --scale worker=10

Look at the performance graph: does it show a x10 improvement?

Look at the aggregated logs of our containers

Look at the impact on CPU load and memory usage

64 / 695

65 / 695

Identifying bottlenecks

Previous section | Back to table of contents | Next section

66 / 695

Identifying bottlenecks
You should have seen a 3x speed bump (not 10x)

Adding workers didn't result in linear improvement

Something else is slowing us down

67 / 695

Identifying bottlenecks
You should have seen a 3x speed bump (not 10x)

Adding workers didn't result in linear improvement

Something else is slowing us down

... But what?

68 / 695

Identifying bottlenecks
You should have seen a 3x speed bump (not 10x)

Adding workers didn't result in linear improvement

Something else is slowing us down

... But what?

The code doesn't have instrumentation

Let's use state-of-the-art HTTP performance analysis!
(i.e. good old tools like ab, httping...)

69 / 695

Accessing internal services

rng and hasher are exposed on ports 8001 and 8002

This is declared in the Compose file:

...
rng:
 build: rng
 ports:
 - "8001:80"

hasher:
 build: hasher
 ports:
 - "8002:80"
...

70 / 695

Measuring latency under load

We will use httping.

Exercise

Check the latency of rng:

httping -c 3 localhost:8001

Check the latency of hasher:

httping -c 3 localhost:8002

rng has a much higher latency than hasher.

71 / 695

Let's draw hasty conclusions

The bottleneck seems to be rng

What if we don't have enough entropy and can't generate enough random numbers?

We need to scale out the rng service on multiple machines!

Note: this is a fiction! We have enough entropy. But we need a pretext to scale out.

(In fact, the code of rng uses /dev/urandom, which never runs out of entropy...
...and is just as good as /dev/random.)

72 / 695

http://www.slideshare.net/PacSecJP/filippo-plain-simple-reality-of-entropy

Clean up

Before moving on, let's remove those containers

Exercise

Tell Compose to remove everything:

docker-compose down

73 / 695

74 / 695

Kubernetes concepts

Previous section | Back to table of contents | Next section

75 / 695

Kubernetes concepts
Kubernetes is a container management system

It runs and manages containerized applications on a cluster

76 / 695

Kubernetes concepts
Kubernetes is a container management system

It runs and manages containerized applications on a cluster

What does that really mean?

77 / 695

Basic things we can ask Kubernetes to do
78 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

79 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

80 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

81 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

Place a public load balancer in front of these containers

82 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

Place a public load balancer in front of these containers

It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers

83 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

Place a public load balancer in front of these containers

It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers

New release! Replace my containers with the new image atseashop/webfront:v1.4

84 / 695

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

Place a public load balancer in front of these containers

It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers

New release! Replace my containers with the new image atseashop/webfront:v1.4

Keep processing requests during the upgrade; update my containers one at a time

85 / 695

Other things that Kubernetes can do for us

Basic autoscaling

Blue/green deployment, canary deployment

Long running services, but also batch (one-off) jobs

Overcommit our cluster and evict low-priority jobs

Run services with stateful data (databases etc.)

Fine-grained access control defining what can be done by whom on which resources

Integrating third party services (service catalog)

Automating complex tasks (operators)

86 / 695

Kubernetes architecture
87 / 695

88 / 695

Kubernetes architecture

Ha ha ha ha

OK, I was trying to scare you, it's much simpler than that å

89 / 695

90 / 695

Credits

The first schema is a Kubernetes cluster with storage backed by multi-path iSCSI

(Courtesy of Yongbok Kim)

The second one is a simplified representation of a Kubernetes cluster

(Courtesy of Imesh Gunaratne)

91 / 695

https://www.yongbok.net/blog/
https://medium.com/containermind/a-reference-architecture-for-deploying-wso2-middleware-on-kubernetes-d4dee7601e8e

Kubernetes architecture: the nodes

The nodes executing our containers run a collection of services:

a container Engine (typically Docker)

kubelet (the "node agent")

kube-proxy (a necessary but not sufficient network component)

Nodes were formerly called "minions"

(You might see that word in older articles or documentation)

92 / 695

Kubernetes architecture: the control plane

The Kubernetes logic (its "brains") is a collection of services:

the API server (our point of entry to everything!)

core services like the scheduler and controller manager

etcd (a highly available key/value store; the "database" of Kubernetes)

Together, these services form the control plane of our cluster

The control plane is also called the "master"

93 / 695

Running the control plane on special nodes

It is common to reserve a dedicated node for the control plane

(Except for single-node development clusters, like when using minikube)

This node is then called a "master"

(Yes, this is ambiguous: is the "master" a node, or the whole control plane?)

Normal applications are restricted from running on this node

(By using a mechanism called "taints")

When high availability is required, each service of the control plane must be resilient

The control plane is then replicated on multiple nodes

(This is sometimes called a "multi-master" setup)

94 / 695

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Running the control plane outside containers

The services of the control plane can run in or out of containers

For instance: since etcd is a critical service, some people deploy it directly on a
dedicated cluster (without containers)

(This is illustrated on the first "super complicated" schema)

In some hosted Kubernetes offerings (e.g. AKS, GKE, EKS), the control plane is invisible

(We only "see" a Kubernetes API endpoint)

In that case, there is no "master node"

For this reason, it is more accurate to say "control plane" rather than "master".

95 / 695

Do we need to run Docker at all?

No!

96 / 695

Do we need to run Docker at all?

No!

By default, Kubernetes uses the Docker Engine to run containers

We could also use rkt ("Rocket") from CoreOS

Or leverage other pluggable runtimes through the Container Runtime Interface

(like CRI-O, or containerd)

97 / 695

Do we need to run Docker at all?

Yes!

98 / 695

Do we need to run Docker at all?

Yes!

In this workshop, we run our app on a single node first

We will need to build images and ship them around

We can do these things without Docker
(and get diagnosed with NIH¹ syndrome)

Docker is still the most stable container engine today
(but other options are maturing very quickly)

¹Not Invented Here

99 / 695

https://en.wikipedia.org/wiki/Not_invented_here

Do we need to run Docker at all?

On our development environments, CI pipelines ... :

Yes, almost certainly

On our production servers:

Yes (today)

Probably not (in the future)

More information about CRI on the Kubernetes blog

100 / 695

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes

Kubernetes resources

The Kubernetes API defines a lot of objects called resources

These resources are organized by type, or Kind (in the API)

A few common resource types are:

node (a machine — physical or virtual — in our cluster)
pod (group of containers running together on a node)
service (stable network endpoint to connect to one or multiple containers)
namespace (more-or-less isolated group of things)
secret (bundle of sensitive data to be passed to a container)

And much more!

We can see the full list by running kubectl api-resources

(In Kubernetes 1.10 and prior, the command to list API resources was kubectl get)

101 / 695

102 / 695

103 / 695

Credits

The first diagram is courtesy of Weave Works

a pod can have multiple containers working together

IP addresses are associated with pods, not with individual containers

The second diagram is courtesy of Lucas Käldström, in this presentation

it's one of the best Kubernetes architecture diagrams available!

Both diagrams used with permission.

104 / 695

https://speakerdeck.com/luxas/kubeadm-cluster-creation-internals-from-self-hosting-to-upgradability-and-ha

105 / 695

Declarative vs imperative

Previous section | Back to table of contents | Next section

106 / 695

Declarative vs imperative
Our container orchestrator puts a very strong emphasis on being declarative

Declarative:

I would like a cup of tea.

Imperative:

Boil some water. Pour it in a teapot. Add tea leaves. Steep for a while. Serve in a cup.

107 / 695

Declarative vs imperative
Our container orchestrator puts a very strong emphasis on being declarative

Declarative:

I would like a cup of tea.

Imperative:

Boil some water. Pour it in a teapot. Add tea leaves. Steep for a while. Serve in a cup.

Declarative seems simpler at first ...

108 / 695

Declarative vs imperative
Our container orchestrator puts a very strong emphasis on being declarative

Declarative:

I would like a cup of tea.

Imperative:

Boil some water. Pour it in a teapot. Add tea leaves. Steep for a while. Serve in a cup.

Declarative seems simpler at first ...

... As long as you know how to brew tea

109 / 695

Declarative vs imperative

What declarative would really be:

I want a cup of tea, obtained by pouring an infusion¹ of tea leaves in a cup.

110 / 695

Declarative vs imperative

What declarative would really be:

I want a cup of tea, obtained by pouring an infusion¹ of tea leaves in a cup.

¹An infusion is obtained by letting the object steep a few minutes in hot² water.

111 / 695

Declarative vs imperative

What declarative would really be:

I want a cup of tea, obtained by pouring an infusion¹ of tea leaves in a cup.

¹An infusion is obtained by letting the object steep a few minutes in hot² water.

²Hot liquid is obtained by pouring it in an appropriate container³ and setting it on a
stove.

112 / 695

Declarative vs imperative

What declarative would really be:

I want a cup of tea, obtained by pouring an infusion¹ of tea leaves in a cup.

¹An infusion is obtained by letting the object steep a few minutes in hot² water.

²Hot liquid is obtained by pouring it in an appropriate container³ and setting it on a
stove.

³Ah, finally, containers! Something we know about. Let's get to work, shall we?

113 / 695

Declarative vs imperative

What declarative would really be:

I want a cup of tea, obtained by pouring an infusion¹ of tea leaves in a cup.

¹An infusion is obtained by letting the object steep a few minutes in hot² water.

²Hot liquid is obtained by pouring it in an appropriate container³ and setting it on a
stove.

³Ah, finally, containers! Something we know about. Let's get to work, shall we?

Did you know there was an ISO standard specifying how to brew tea?

114 / 695

https://en.wikipedia.org/wiki/ISO_3103

Declarative vs imperative

Imperative systems:

simpler

if a task is interrupted, we have to restart from scratch

Declarative systems:

if a task is interrupted (or if we show up to the party half-way through), we can
figure out what's missing and do only what's necessary

we need to be able to observe the system

... and compute a "diff" between what we have and what we want

115 / 695

Declarative vs imperative in Kubernetes

Virtually everything we create in Kubernetes is created from a spec

Watch for the spec fields in the YAML files later!

The spec describes how we want the thing to be

Kubernetes will reconcile the current state with the spec
(technically, this is done by a number of controllers)

When we want to change some resource, we update the spec

Kubernetes will then converge that resource

116 / 695

117 / 695

Kubernetes network model

Previous section | Back to table of contents | Next section

118 / 695

Kubernetes network model
TL,DR:

Our cluster (nodes and pods) is one big flat IP network.

119 / 695

Kubernetes network model
TL,DR:

Our cluster (nodes and pods) is one big flat IP network.

In detail:

all nodes must be able to reach each other, without NAT

all pods must be able to reach each other, without NAT

pods and nodes must be able to reach each other, without NAT

each pod is aware of its IP address (no NAT)

Kubernetes doesn't mandate any particular implementation

120 / 695

Kubernetes network model: the good

Everything can reach everything

No address translation

No port translation

No new protocol

Pods cannot move from a node to another and keep their IP address

IP addresses don't have to be "portable" from a node to another

(We can use e.g. a subnet per node and use a simple routed topology)

The specification is simple enough to allow many various implementations

121 / 695

Kubernetes network model: the less good

Everything can reach everything

if you want security, you need to add network policies

the network implementation that you use needs to support them

There are literally dozens of implementations out there

(15 are listed in the Kubernetes documentation)

Pods have level 3 (IP) connectivity, but services are level 4

(Services map to a single UDP or TCP port; no port ranges or arbitrary IP packets)

kube-proxy is on the data path when connecting to a pod or container,
and it's not particularly fast (relies on userland proxying or iptables)

122 / 695

Kubernetes network model: in practice

The nodes that we are using have been set up to use Weave

We don't endorse Weave in a particular way, it just Works For Us

Don't worry about the warning about kube-proxy performance

Unless you:

routinely saturate 10G network interfaces
count packet rates in millions per second
run high-traffic VOIP or gaming platforms
do weird things that involve millions of simultaneous connections
(in which case you're already familiar with kernel tuning)

If necessary, there are alternatives to kube-proxy; e.g. kube-router

123 / 695

https://github.com/weaveworks/weave
https://www.kube-router.io/

The Container Network Interface (CNI)

The CNI has a well-defined specification for network plugins

When a pod is created, Kubernetes delegates the network setup to CNI plugins

Typically, a CNI plugin will:

allocate an IP address (by calling an IPAM plugin)

add a network interface into the pod's network namespace

configure the interface as well as required routes etc.

Using multiple plugins can be done with "meta-plugins" like CNI-Genie or Multus

Not all CNI plugins are equal

(e.g. they don't all implement network policies, which are required to isolate pods)

124 / 695

https://github.com/containernetworking/cni/blob/master/SPEC.md#network-configuration

125 / 695

First contact with kubectl

Previous section | Back to table of contents | Next section

126 / 695

First contact with kubectl
kubectl is (almost) the only tool we'll need to talk to Kubernetes

It is a rich CLI tool around the Kubernetes API

(Everything you can do with kubectl, you can do directly with the API)

On our machines, there is a ~/.kube/config file with:

the Kubernetes API address

the path to our TLS certificates used to authenticate

You can also use the --kubeconfig flag to pass a config file

Or directly --server, --user, etc.

kubectl can be pronounced "Cube C T L", "Cube cuttle", "Cube cuddle"...

127 / 695

kubectl get
Let's look at our Node resources with kubectl get!

Exercise

Look at the composition of our cluster:

kubectl get node

These commands are equivalent:

kubectl get no
kubectl get node
kubectl get nodes

128 / 695

Obtaining machine-readable output

kubectl get can output JSON, YAML, or be directly formatted

Exercise

Give us more info about the nodes:

kubectl get nodes -o wide

Let's have some YAML:

kubectl get no -o yaml

See that kind: List at the end? It's the type of our result!

129 / 695

(Ab)using kubectl and jq
It's super easy to build custom reports

Exercise

Show the capacity of all our nodes as a stream of JSON objects:

kubectl get nodes -o json |
 jq ".items[] | {name:.metadata.name} + .status.capacity"

130 / 695

What's available?

kubectl has pretty good introspection facilities

We can list all available resource types by running kubectl api-resources
(In Kubernetes 1.10 and prior, this command used to be kubectl get)

We can view details about a resource with:

kubectl describe type/name
kubectl describe type name

We can view the definition for a resource type with:

kubectl explain type

Each time, type can be singular, plural, or abbreviated type name.

131 / 695

Services

A service is a stable endpoint to connect to "something"

(In the initial proposal, they were called "portals")

Exercise

List the services on our cluster with one of these commands:

kubectl get services
kubectl get svc

132 / 695

Services

A service is a stable endpoint to connect to "something"

(In the initial proposal, they were called "portals")

Exercise

List the services on our cluster with one of these commands:

kubectl get services
kubectl get svc

There is already one service on our cluster: the Kubernetes API itself.

133 / 695

ClusterIP services

A ClusterIP service is internal, available from the cluster only

This is useful for introspection from within containers

Exercise

Try to connect to the API:

-k is used to skip certificate verification

Make sure to replace 10.96.0.1 with the CLUSTER-IP shown by kubectl get svc

curl -k https://10.96.0.1

134 / 695

ClusterIP services

A ClusterIP service is internal, available from the cluster only

This is useful for introspection from within containers

Exercise

Try to connect to the API:

-k is used to skip certificate verification

Make sure to replace 10.96.0.1 with the CLUSTER-IP shown by kubectl get svc

The error that we see is expected: the Kubernetes API requires authentication.

curl -k https://10.96.0.1

135 / 695

Listing running containers

Containers are manipulated through pods

A pod is a group of containers:

running together (on the same node)

sharing resources (RAM, CPU; but also network, volumes)

Exercise

List pods on our cluster:

kubectl get pods

136 / 695

Listing running containers

Containers are manipulated through pods

A pod is a group of containers:

running together (on the same node)

sharing resources (RAM, CPU; but also network, volumes)

Exercise

List pods on our cluster:

kubectl get pods

These are not the pods you're looking for. But where are they?!?

137 / 695

Namespaces

Namespaces allow us to segregate resources

Exercise

List the namespaces on our cluster with one of these commands:

kubectl get namespaces
kubectl get namespace
kubectl get ns

138 / 695

Namespaces

Namespaces allow us to segregate resources

Exercise

List the namespaces on our cluster with one of these commands:

kubectl get namespaces
kubectl get namespace
kubectl get ns

You know what ... This kube-system thing looks suspicious.

139 / 695

Accessing namespaces

By default, kubectl uses the default namespace

We can switch to a different namespace with the -n option

Exercise

List the pods in the kube-system namespace:

kubectl -n kube-system get pods

140 / 695

Accessing namespaces

By default, kubectl uses the default namespace

We can switch to a different namespace with the -n option

Exercise

List the pods in the kube-system namespace:

kubectl -n kube-system get pods

Ding ding ding ding ding!

The kube-system namespace is used for the control plane.

141 / 695

What are all these control plane pods?

etcd is our etcd server

kube-apiserver is the API server

kube-controller-manager and kube-scheduler are other master components

coredns provides DNS-based service discovery (replacing kube-dns as of 1.11)

kube-proxy is the (per-node) component managing port mappings and such

weave is the (per-node) component managing the network overlay

the READY column indicates the number of containers in each pod

the pods with a name ending with -node1 are the master components
(they have been specifically "pinned" to the master node)

142 / 695

https://kubernetes.io/blog/2018/07/10/coredns-ga-for-kubernetes-cluster-dns/

What about kube-public?

Exercise

List the pods in the kube-public namespace:

kubectl -n kube-public get pods

143 / 695

What about kube-public?

Exercise

List the pods in the kube-public namespace:

kubectl -n kube-public get pods

Maybe it doesn't have pods, but what secrets is kube-public keeping?

144 / 695

What about kube-public?

Exercise

List the pods in the kube-public namespace:

kubectl -n kube-public get pods

Maybe it doesn't have pods, but what secrets is kube-public keeping?

Exercise

List the secrets in the kube-public namespace:

kubectl -n kube-public get secrets

145 / 695

What about kube-public?

Exercise

List the pods in the kube-public namespace:

kubectl -n kube-public get pods

Maybe it doesn't have pods, but what secrets is kube-public keeping?

Exercise

List the secrets in the kube-public namespace:

kubectl -n kube-public get secrets

kube-public is created by kubeadm & used for security bootstrapping

146 / 695

https://kubernetes.io/blog/2017/01/stronger-foundation-for-creating-and-managing-kubernetes-clusters

147 / 695

Setting up Kubernetes

Previous section | Back to table of contents | Next section

148 / 695

Setting up Kubernetes
How did we set up these Kubernetes clusters that we're using?

149 / 695

Setting up Kubernetes
How did we set up these Kubernetes clusters that we're using?

We used kubeadm on freshly installed VM instances running Ubuntu 16.04 LTS

1. Install Docker

2. Install Kubernetes packages

3. Run kubeadm init on the first node (it deploys the control plane on that node)

4. Set up Weave (the overlay network)
(that step is just one kubectl apply command; discussed later)

5. Run kubeadm join on the other nodes (with the token produced by kubeadm init)

6. Copy the configuration file generated by kubeadm init

Check the prepare VMs README for more details

150 / 695

https://github.com/jpetazzo/container.training/blob/master/prepare-vms/README.md

kubeadm drawbacks

Doesn't set up Docker or any other container engine

Doesn't set up the overlay network

Doesn't set up multi-master (no high availability)

151 / 695

kubeadm drawbacks

Doesn't set up Docker or any other container engine

Doesn't set up the overlay network

Doesn't set up multi-master (no high availability)

(At least ... not yet! Though it's experimental in 1.12.)

152 / 695

https://kubernetes.io/docs/setup/independent/high-availability/

kubeadm drawbacks

Doesn't set up Docker or any other container engine

Doesn't set up the overlay network

Doesn't set up multi-master (no high availability)

(At least ... not yet! Though it's experimental in 1.12.)

"It's still twice as many steps as setting up a Swarm cluster ϖ" -- Jérôme

153 / 695

https://kubernetes.io/docs/setup/independent/high-availability/

Other deployment options

If you are on Azure: AKS

If you are on Google Cloud: GKE

If you are on AWS: EKS or kops

On a local machine: minikube, kubespawn, Docker4Mac

If you want something customizable: kubicorn

Probably the closest to a multi-cloud/hybrid solution so far, but in development

154 / 695

https://azure.microsoft.com/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
https://github.com/kubernetes/kops
https://kubernetes.io/docs/setup/minikube/
https://github.com/kinvolk/kube-spawn
https://docs.docker.com/docker-for-mac/kubernetes/
https://github.com/kubicorn/kubicorn

Even more deployment options

If you like Ansible: kubespray

If you like Terraform: typhoon

If you like Terraform and Puppet: tarmak

You can also learn how to install every component manually, with the excellent tutorial
Kubernetes The Hard Way

Kubernetes The Hard Way is optimized for learning, which means taking the long route to
ensure you understand each task required to bootstrap a Kubernetes cluster.

There are also many commercial options available!

For a longer list, check the Kubernetes documentation:
it has a great guide to pick the right solution to set up Kubernetes.

155 / 695

https://github.com/kubernetes-incubator/kubespray
https://github.com/poseidon/typhoon
https://github.com/jetstack/tarmak
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://kubernetes.io/docs/setup/pick-right-solution/

156 / 695

Running our first containers
on Kubernetes

Previous section | Back to table of contents | Next section

157 / 695

Running our first containers on Kubernetes
First things first: we cannot run a container

158 / 695

Running our first containers on Kubernetes
First things first: we cannot run a container

We are going to run a pod, and in that pod there will be a single container

159 / 695

Running our first containers on Kubernetes
First things first: we cannot run a container

We are going to run a pod, and in that pod there will be a single container

In that container in the pod, we are going to run a simple ping command

Then we are going to start additional copies of the pod

160 / 695

Starting a simple pod with kubectl run
We need to specify at least a name and the image we want to use

Exercise

Let's ping 1.1.1.1, Cloudflare's public DNS resolver:

kubectl run pingpong --image alpine ping 1.1.1.1

161 / 695

https://blog.cloudflare.com/announcing-1111/

Starting a simple pod with kubectl run
We need to specify at least a name and the image we want to use

Exercise

Let's ping 1.1.1.1, Cloudflare's public DNS resolver:

kubectl run pingpong --image alpine ping 1.1.1.1

(Starting with Kubernetes 1.12, we get a message telling us that kubectl run is deprecated.
Let's ignore it for now.)

162 / 695

https://blog.cloudflare.com/announcing-1111/

Behind the scenes of kubectl run
Let's look at the resources that were created by kubectl run

Exercise

List most resource types:

kubectl get all

163 / 695

Behind the scenes of kubectl run
Let's look at the resources that were created by kubectl run

Exercise

List most resource types:

kubectl get all

We should see the following things:

deployment.apps/pingpong (the deployment that we just created)
replicaset.apps/pingpong-xxxxxxxxxx (a replica set created by the deployment)
pod/pingpong-xxxxxxxxxx-yyyyy (a pod created by the replica set)

Note: as of 1.10.1, resource types are displayed in more detail.

164 / 695

What are these different things?

A deployment is a high-level construct

allows scaling, rolling updates, rollbacks

multiple deployments can be used together to implement a canary deployment

delegates pods management to replica sets

A replica set is a low-level construct

makes sure that a given number of identical pods are running

allows scaling

rarely used directly

A replication controller is the (deprecated) predecessor of a replica set

165 / 695

https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments

Our pingpong deployment

kubectl run created a deployment, deployment.apps/pingpong

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/pingpong 1 1 1 1 10m

That deployment created a replica set, replicaset.apps/pingpong-xxxxxxxxxx

NAME DESIRED CURRENT READY AGE
replicaset.apps/pingpong-7c8bbcd9bc 1 1 1 10m

That replica set created a pod, pod/pingpong-xxxxxxxxxx-yyyyy

NAME READY STATUS RESTARTS AGE
pod/pingpong-7c8bbcd9bc-6c9qz 1/1 Running 0 10m

We'll see later how these folks play together for:

scaling, high availability, rolling updates

166 / 695

Viewing container output

Let's use the kubectl logs command

We will pass either a pod name, or a type/name

(E.g. if we specify a deployment or replica set, it will get the first pod in it)

Unless specified otherwise, it will only show logs of the first container in the pod

(Good thing there's only one in ours!)

Exercise

View the result of our ping command:

kubectl logs deploy/pingpong

167 / 695

Streaming logs in real time

Just like docker logs, kubectl logs supports convenient options:

-f/--follow to stream logs in real time (à la tail -f)

--tail to indicate how many lines you want to see (from the end)

--since to get logs only after a given timestamp

Exercise

View the latest logs of our ping command:

kubectl logs deploy/pingpong --tail 1 --follow

168 / 695

Scaling our application

We can create additional copies of our container (I mean, our pod) with kubectl scale

Exercise

Scale our pingpong deployment:

kubectl scale deploy/pingpong --replicas 8

Note: what if we tried to scale replicaset.apps/pingpong-xxxxxxxxxx?

We could! But the deployment would notice it right away, and scale back to the initial level.

169 / 695

Resilience

The deployment pingpong watches its replica set

The replica set ensures that the right number of pods are running

What happens if pods disappear?

Exercise

In a separate window, list pods, and keep watching them:

kubectl get pods -w

Destroy a pod:

kubectl delete pod pingpong-xxxxxxxxxx-yyyyy

170 / 695

What if we wanted something different?

What if we wanted to start a "one-shot" container that doesn't get restarted?

We could use kubectl run --restart=OnFailure or kubectl run --restart=Never

These commands would create jobs or pods instead of deployments

Under the hood, kubectl run invokes "generators" to create resource descriptions

We could also write these resource descriptions ourselves (typically in YAML),
and create them on the cluster with kubectl apply -f (discussed later)

With kubectl run --schedule=..., we can also create cronjobs

171 / 695

What about that deprecation warning?

As we can see from the previous slide, kubectl run can do many things

The exact type of resource created is not obvious

To make things more explicit, it is better to use kubectl create:

kubectl create deployment to create a deployment

kubectl create job to create a job

Eventually, kubectl run will be used only to start one-shot pods

(see https://github.com/kubernetes/kubernetes/pull/68132)

172 / 695

https://github.com/kubernetes/kubernetes/pull/68132

Various ways of creating resources

kubectl run

easy way to get started
versatile

kubectl create <resource>

explicit, but lacks some features
can't create a CronJob
can't pass command-line arguments to deployments

kubectl create -f foo.yaml or kubectl apply -f foo.yaml

all features are available
requires writing YAML

173 / 695

Viewing logs of multiple pods

When we specify a deployment name, only one single pod's logs are shown

We can view the logs of multiple pods by specifying a selector

A selector is a logic expression using labels

Conveniently, when you kubectl run somename, the associated objects have a
run=somename label

Exercise

View the last line of log from all pods with the run=pingpong label:

kubectl logs -l run=pingpong --tail 1

Unfortunately, --follow cannot (yet) be used to stream the logs from multiple containers.

174 / 695

Aren't we flooding 1.1.1.1?

If you're wondering this, good question!

Don't worry, though:

APNIC's research group held the IP addresses 1.1.1.1 and 1.0.0.1. While the addresses
were valid, so many people had entered them into various random systems that they were
continuously overwhelmed by a flood of garbage traffic. APNIC wanted to study this
garbage traffic but any time they'd tried to announce the IPs, the flood would overwhelm
any conventional network.

(Source: https://blog.cloudflare.com/announcing-1111/)

It's very unlikely that our concerted pings manage to produce even a modest blip at
Cloudflare's NOC!

175 / 695

https://blog.cloudflare.com/announcing-1111/

176 / 695

Exposing containers

Previous section | Back to table of contents | Next section

177 / 695

Exposing containers

kubectl expose creates a service for existing pods

A service is a stable address for a pod (or a bunch of pods)

If we want to connect to our pod(s), we need to create a service

Once a service is created, CoreDNS will allow us to resolve it by name

(i.e. after creating service hello, the name hello will resolve to something)

There are different types of services, detailed on the following slides:

ClusterIP, NodePort, LoadBalancer, ExternalName

178 / 695

Basic service types

ClusterIP (default type)

a virtual IP address is allocated for the service (in an internal, private range)
this IP address is reachable only from within the cluster (nodes and pods)
our code can connect to the service using the original port number

NodePort

a port is allocated for the service (by default, in the 30000-32768 range)
that port is made available on all our nodes and anybody can connect to it
our code must be changed to connect to that new port number

These service types are always available.

Under the hood: kube-proxy is using a userland proxy and a bunch of iptables rules.

179 / 695

More service types

LoadBalancer

an external load balancer is allocated for the service
the load balancer is configured accordingly
(e.g.: a NodePort service is created, and the load balancer sends traffic to that port)
available only when the underlying infrastructure provides some "load balancer as
a service"
(e.g. AWS, Azure, GCE, OpenStack...)

ExternalName

the DNS entry managed by CoreDNS will just be a CNAME to a provided record
no port, no IP address, no nothing else is allocated

180 / 695

Running containers with open ports

Since ping doesn't have anything to connect to, we'll have to run something else

Exercise

Start a bunch of HTTP servers:

kubectl run httpenv --image=jpetazzo/httpenv --replicas=10

Watch them being started:

kubectl get pods -w

The jpetazzo/httpenv image runs an HTTP server on port 8888.
It serves its environment variables in JSON format.

The -w option "watches" events happening on the specified resources.

181 / 695

Exposing our deployment

We'll create a default ClusterIP service

Exercise

Expose the HTTP port of our server:

kubectl expose deploy/httpenv --port 8888

Look up which IP address was allocated:

kubectl get svc

182 / 695

Services are layer 4 constructs

You can assign IP addresses to services, but they are still layer 4

(i.e. a service is not an IP address; it's an IP address + protocol + port)

This is caused by the current implementation of kube-proxy

(it relies on mechanisms that don't support layer 3)

As a result: you have to indicate the port number for your service

Running services with arbitrary port (or port ranges) requires hacks

(e.g. host networking mode)

183 / 695

Testing our service

We will now send a few HTTP requests to our pods

Exercise

Let's obtain the IP address that was allocated for our service, programmatically:

IP=$(kubectl get svc httpenv -o go-template --template '{{ .spec.clusterIP }}')

Send a few requests:

curl http://$IP:8888/

Too much output? Filter it with jq:

curl -s http://$IP:8888/ | jq .HOSTNAME

184 / 695

Testing our service

We will now send a few HTTP requests to our pods

Exercise

Let's obtain the IP address that was allocated for our service, programmatically:

IP=$(kubectl get svc httpenv -o go-template --template '{{ .spec.clusterIP }}')

Send a few requests:

curl http://$IP:8888/

Too much output? Filter it with jq:

curl -s http://$IP:8888/ | jq .HOSTNAME

Try it a few times! Our requests are load balanced across multiple pods.

185 / 695

If we don't need a load balancer

Sometimes, we want to access our scaled services directly:

if we want to save a tiny little bit of latency (typically less than 1ms)

if we need to connect over arbitrary ports (instead of a few fixed ones)

if we need to communicate over another protocol than UDP or TCP

if we want to decide how to balance the requests client-side

...

In that case, we can use a "headless service"

186 / 695

Headless services

A headless service is obtained by setting the clusterIP field to None

(Either with --cluster-ip=None, or by providing a custom YAML)

As a result, the service doesn't have a virtual IP address

Since there is no virtual IP address, there is no load balancer either

CoreDNS will return the pods' IP addresses as multiple A records

This gives us an easy way to discover all the replicas for a deployment

187 / 695

Services and endpoints

A service has a number of "endpoints"

Each endpoint is a host + port where the service is available

The endpoints are maintained and updated automatically by Kubernetes

Exercise

Check the endpoints that Kubernetes has associated with our httpenv service:

kubectl describe service httpenv

In the output, there will be a line starting with Endpoints:.

That line will list a bunch of addresses in host:port format.

188 / 695

Viewing endpoint details

When we have many endpoints, our display commands truncate the list

kubectl get endpoints

If we want to see the full list, we can use one of the following commands:

kubectl describe endpoints httpenv
kubectl get endpoints httpenv -o yaml

These commands will show us a list of IP addresses

These IP addresses should match the addresses of the corresponding pods:

kubectl get pods -l run=httpenv -o wide

189 / 695

endpoints not endpoint
endpoints is the only resource that cannot be singular

$ kubectl get endpoint
error: the server doesn't have a resource type "endpoint"

This is because the type itself is plural (unlike every other resource)

There is no endpoint object: type Endpoints struct

The type doesn't represent a single endpoint, but a list of endpoints

190 / 695

Our app on Kube

191 / 695

What's on the menu?

In this part, we will:

build images for our app,

ship these images with a registry,

run deployments using these images,

expose these deployments so they can communicate with each other,

expose the web UI so we can access it from outside.

192 / 695

The plan

Build on our control node (node1)

Tag images so that they are named $REGISTRY/servicename

Upload them to a registry

Create deployments using the images

Expose (with a ClusterIP) the services that need to communicate

Expose (with a NodePort) the WebUI

193 / 695

Which registry do we want to use?

We could use the Docker Hub

Or a service offered by our cloud provider (ACR, GCR, ECR...)

Or we could just self-host that registry

We'll self-host the registry because it's the most generic solution for this workshop.

194 / 695

Using the open source registry

We need to run a registry container

It will store images and layers to the local filesystem
(but you can add a config file to use S3, Swift, etc.)

Docker requires TLS when communicating with the registry

unless for registries on 127.0.0.0/8 (i.e. localhost)

or with the Engine flag --insecure-registry

Our strategy: publish the registry container on a NodePort,
so that it's available through 127.0.0.1:xxxxx on each node

195 / 695

196 / 695

Deploying a self-hosted
registry

Previous section | Back to table of contents | Next section

197 / 695

Deploying a self-hosted registry
We will deploy a registry container, and expose it with a NodePort

Exercise

Create the registry service:

kubectl run registry --image=registry

Expose it on a NodePort:

kubectl expose deploy/registry --port=5000 --type=NodePort

198 / 695

Connecting to our registry

We need to find out which port has been allocated

Exercise

View the service details:

kubectl describe svc/registry

Get the port number programmatically:

NODEPORT=$(kubectl get svc/registry -o json | jq .spec.ports[0].nodePort)
REGISTRY=127.0.0.1:$NODEPORT

199 / 695

Testing our registry

A convenient Docker registry API route to remember is /v2/_catalog

Exercise

View the repositories currently held in our registry:

curl $REGISTRY/v2/_catalog

200 / 695

Testing our registry

A convenient Docker registry API route to remember is /v2/_catalog

Exercise

View the repositories currently held in our registry:

curl $REGISTRY/v2/_catalog

We should see:

{"repositories":[]}

201 / 695

Testing our local registry

We can retag a small image, and push it to the registry

Exercise

Make sure we have the busybox image, and retag it:

docker pull busybox
docker tag busybox $REGISTRY/busybox

Push it:

docker push $REGISTRY/busybox

202 / 695

Checking again what's on our local registry

Let's use the same endpoint as before

Exercise

Ensure that our busybox image is now in the local registry:

curl $REGISTRY/v2/_catalog

The curl command should now output:

{"repositories":["busybox"]}

203 / 695

Building and pushing our images

We are going to use a convenient feature of Docker Compose

Exercise

Go to the stacks directory:

cd ~/container.training/stacks

Build and push the images:

export REGISTRY
export TAG=v0.1
docker-compose -f dockercoins.yml build
docker-compose -f dockercoins.yml push

Let's have a look at the dockercoins.yml file while this is building and pushing.

204 / 695

version: "3"

services:
 rng:
 build: dockercoins/rng
 image: ${REGISTRY-127.0.0.1:5000}/rng:${TAG-latest}
 deploy:
 mode: global
 ...
 redis:
 image: redis
 ...
 worker:
 build: dockercoins/worker
 image: ${REGISTRY-127.0.0.1:5000}/worker:${TAG-latest}
 ...
 deploy:
 replicas: 10

Just in case you were wondering ... Docker "services" are not Kubernetes "services".

205 / 695

Avoiding the latest tag

Make sure that you've set the TAG variable properly!

If you don't, the tag will default to latest

The problem with latest: nobody knows what it points to!

the latest commit in the repo?

the latest commit in some branch? (Which one?)

the latest tag?

some random version pushed by a random team member?

If you keep pushing the latest tag, how do you roll back?

Image tags should be meaningful, i.e. correspond to code branches, tags, or hashes

206 / 695

Deploying all the things

We can now deploy our code (as well as a redis instance)

Exercise

Deploy redis:

kubectl run redis --image=redis

Deploy everything else:

for SERVICE in hasher rng webui worker; do
 kubectl run $SERVICE --image=$REGISTRY/$SERVICE:$TAG
done

207 / 695

Is this working?

After waiting for the deployment to complete, let's look at the logs!

(Hint: use kubectl get deploy -w to watch deployment events)

Exercise

Look at some logs:

kubectl logs deploy/rng
kubectl logs deploy/worker

208 / 695

Is this working?

After waiting for the deployment to complete, let's look at the logs!

(Hint: use kubectl get deploy -w to watch deployment events)

Exercise

Look at some logs:

kubectl logs deploy/rng
kubectl logs deploy/worker

Ѵ rng is fine ... But not worker.

209 / 695

Is this working?

After waiting for the deployment to complete, let's look at the logs!

(Hint: use kubectl get deploy -w to watch deployment events)

Exercise

Look at some logs:

kubectl logs deploy/rng
kubectl logs deploy/worker

Ѵ rng is fine ... But not worker.

ˊ Oh right! We forgot to expose.

210 / 695

211 / 695

Exposing services internally

Previous section | Back to table of contents | Next section

212 / 695

Exposing services internally

Three deployments need to be reachable by others: hasher, redis, rng

worker doesn't need to be exposed

webui will be dealt with later

Exercise

Expose each deployment, specifying the right port:

kubectl expose deployment redis --port 6379
kubectl expose deployment rng --port 80
kubectl expose deployment hasher --port 80

213 / 695

Is this working yet?

The worker has an infinite loop, that retries 10 seconds after an error

Exercise

Stream the worker's logs:

kubectl logs deploy/worker --follow

(Give it about 10 seconds to recover)

214 / 695

Is this working yet?

The worker has an infinite loop, that retries 10 seconds after an error

Exercise

Stream the worker's logs:

kubectl logs deploy/worker --follow

(Give it about 10 seconds to recover)

We should now see the worker, well, working happily.

215 / 695

216 / 695

Exposing services for external
access

Previous section | Back to table of contents | Next section

217 / 695

Exposing services for external access
Now we would like to access the Web UI

We will expose it with a NodePort

(just like we did for the registry)

Exercise

Create a NodePort service for the Web UI:

kubectl expose deploy/webui --type=NodePort --port=80

Check the port that was allocated:

kubectl get svc

218 / 695

Accessing the web UI

We can now connect to any node, on the allocated node port, to view the web UI

Exercise

Open the web UI in your browser (http://node-ip-address:3xxxx/)

219 / 695

Accessing the web UI

We can now connect to any node, on the allocated node port, to view the web UI

Exercise

Open the web UI in your browser (http://node-ip-address:3xxxx/)

Yes, this may take a little while to update. (Narrator: it was DNS.)

220 / 695

Accessing the web UI

We can now connect to any node, on the allocated node port, to view the web UI

Exercise

Open the web UI in your browser (http://node-ip-address:3xxxx/)

Yes, this may take a little while to update. (Narrator: it was DNS.)

Alright, we're back to where we started, when we were running on a single node!

221 / 695

222 / 695

Accessing the API with
kubectl proxy

Previous section | Back to table of contents | Next section

223 / 695

Accessing the API with kubectl proxy
The API requires us to authenticate¹

There are many authentication methods available, including:

TLS client certificates
(that's what we've used so far)

HTTP basic password authentication
(from a static file; not recommended)

various token mechanisms
(detailed in the documentation)

¹OK, we lied. If you don't authenticate, you are considered to be user system:anonymous,
which doesn't have any access rights by default.

224 / 695

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#authentication-strategies

Accessing the API directly

Let's see what happens if we try to access the API directly with curl

Exercise

Retrieve the ClusterIP allocated to the kubernetes service:

kubectl get svc kubernetes

Replace the IP below and try to connect with curl:

The API will tell us that user system:anonymous cannot access this path.

curl -k https://10.96.0.1/

225 / 695

Authenticating to the API

If we wanted to talk to the API, we would need to:

extract our TLS key and certificate information from ~/.kube/config

(the information is in PEM format, encoded in base64)

use that information to present our certificate when connecting

(for instance, with openssl s_client -key ... -cert ... -connect ...)

figure out exactly which credentials to use

(once we start juggling multiple clusters)

change that whole process if we're using another authentication method

Ѵ There has to be a better way!

226 / 695

Using kubectl proxy for authentication

kubectl proxy runs a proxy in the foreground

This proxy lets us access the Kubernetes API without authentication

(kubectl proxy adds our credentials on the fly to the requests)

This proxy lets us access the Kubernetes API over plain HTTP

This is a great tool to learn and experiment with the Kubernetes API

... And for serious usages as well (suitable for one-shot scripts)

For unattended use, it is better to create a service account

227 / 695

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Trying kubectl proxy
Let's start kubectl proxy and then do a simple request with curl!

Exercise

Start kubectl proxy in the background:

kubectl proxy &

Access the API's default route:

curl localhost:8001

Terminate the proxy:

kill %1

The output is a list of available API routes.

228 / 695

kubectl proxy is intended for local use

By default, the proxy listens on port 8001

(But this can be changed, or we can tell kubectl proxy to pick a port)

By default, the proxy binds to 127.0.0.1

(Making it unreachable from other machines, for security reasons)

By default, the proxy only accepts connections from:

^localhost$,^127\.0\.0\.1$,^\[::1\]$

This is great when running kubectl proxy locally

Not-so-great when you want to connect to the proxy from a remote machine

229 / 695

Running kubectl proxy on a remote machine

If we wanted to connect to the proxy from another machine, we would need to:

bind to INADDR_ANY instead of 127.0.0.1

accept connections from any address

This is achieved with:

kubectl proxy --port=8888 --address=0.0.0.0 --accept-hosts=.*

Do not do this on a real cluster: it opens full unauthenticated access!

230 / 695

Security considerations

Running kubectl proxy openly is a huge security risk

It is slightly better to run the proxy where you need it

(and copy credentials, e.g. ~/.kube/config, to that place)

It is even better to use a limited account with reduced permissions

231 / 695

Good to know ...

kubectl proxy also gives access to all internal services

Specifically, services are exposed as such:

/api/v1/namespaces/<namespace>/services/<service>/proxy

We can use kubectl proxy to access an internal service in a pinch

(or, for non HTTP services, kubectl port-forward)

This is not very useful when running kubectl directly on the cluster

(since we could connect to the services directly anyway)

But it is very powerful as soon as you run kubectl from a remote machine

232 / 695

233 / 695

Controlling the cluster
remotely

Previous section | Back to table of contents | Next section

234 / 695

Controlling the cluster remotely

All the operations that we do with kubectl can be done remotely

In this section, we are going to use kubectl from our local machine

235 / 695

Installing kubectl
If you already have kubectl on your local machine, you can skip this

Exercise

Download the kubectl binary from one of these links:

Linux | macOS | Windows

On Linux and macOS, make the binary executable with chmod +x kubectl

(And remember to run it with ./kubectl or move it to your $PATH)

Note: if you are following along with a different platform (e.g. Linux on an architecture
different from amd64, or with a phone or tablet), installing kubectl might be more
complicated (or even impossible) so feel free to skip this section.

236 / 695

https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/windows/amd64/kubectl.exe

Testing kubectl
Check that kubectl works correctly

(before even trying to connect to a remote cluster!)

Exercise

Ask kubectl to show its version number:

kubectl version --client

The output should look like this:

Client Version: version.Info{Major:"1", Minor:"11", GitVersion:"v1.11.2",
GitCommit:"bb9ffb1654d4a729bb4cec18ff088eacc153c239", GitTreeState:"clean",
BuildDate:"2018-08-07T23:17:28Z", GoVersion:"go1.10.3", Compiler:"gc",
Platform:"linux/amd64"}

237 / 695

Moving away the existing ~/.kube/config
If you already have a ~/.kube/config file, move it away

(we are going to overwrite it in the following slides!)

If you never used kubectl on your machine before: nothing to do!

If you already used kubectl to control a Kubernetes cluster before:

rename ~/.kube/config to e.g. ~/.kube/config.bak

238 / 695

Copying the configuration file from node1
The ~/.kube/config file that is on node1 contains all the credentials we need

Let's copy it over!

Exercise

Copy the file from node1; if you are using macOS or Linux, you can do:

scp USER@X.X.X.X:.kube/config ~/.kube/config
Make sure to replace X.X.X.X with the IP address of node1,
and USER with the user name used to log into node1!

If you are using Windows, adapt these instructions to your SSH client

239 / 695

Updating the server address

There is a good chance that we need to update the server address

To know if it is necessary, run kubectl config view

Look for the server: address:

if it matches the public IP address of node1, you're good!

if it is anything else (especially a private IP address), update it!

To update the server address, run:

kubectl config set-cluster kubernetes --server=https://X.X.X.X:6443
kubectl config set-cluster kubernetes --insecure-skip-tls-verify
Make sure to replace X.X.X.X with the IP address of node1!

240 / 695

Why do we skip TLS verification?

Generally, the Kubernetes API uses a certificate that is valid for:

kubernetes
kubernetes.default
kubernetes.default.svc
kubernetes.default.svc.cluster.local
the ClusterIP address of the kubernetes service
the hostname of the node hosting the control plane (e.g. node1)
the IP address of the node hosting the control plane

On most clouds, the IP address of the node is an internal IP address

... And we are going to connect over the external IP address

... And that external IP address was not used when creating the certificate!

It's better to NOT skip TLS verification; this is for educational purposes only!

241 / 695

Checking that we can connect to the cluster

We can now run a couple of trivial commands to check that all is well

Exercise

Check the versions of the local client and remote server:

kubectl version

View the nodes of the cluster:

kubectl get nodes

We can now utilize the cluster exactly as we did before, ignoring that it's remote.

242 / 695

243 / 695

Accessing internal services

Previous section | Back to table of contents | Next section

244 / 695

Accessing internal services
When we are logged in on a cluster node, we can access internal services

(by virtue of the Kubernetes network model: all nodes can reach all pods and services)

When we are accessing a remote cluster, things are different

(generally, our local machine won't have access to the cluster's internal subnet)

How can we temporarily access a service without exposing it to everyone?

245 / 695

Accessing internal services
When we are logged in on a cluster node, we can access internal services

(by virtue of the Kubernetes network model: all nodes can reach all pods and services)

When we are accessing a remote cluster, things are different

(generally, our local machine won't have access to the cluster's internal subnet)

How can we temporarily access a service without exposing it to everyone?

kubectl proxy: gives us access to the API, which includes a proxy for HTTP resources

kubectl port-forward: allows forwarding of TCP ports to arbitrary pods, services, ...

246 / 695

Suspension of disbelief

The exercises in this section assume that we have set up kubectl on our local machine in
order to access a remote cluster.

We will therefore show how to access services and pods of the remote cluster, from our
local machine.

You can also run these exercises directly on the cluster (if you haven't installed and set up
kubectl locally).

Running commands locally will be less useful (since you could access services and pods
directly), but keep in mind that these commands will work anywhere as long as you have
installed and set up kubectl to communicate with your cluster.

247 / 695

kubectl proxy in theory

Running kubectl proxy gives us access to the entire Kubernetes API

The API includes routes to proxy HTTP traffic

These routes look like the following:

/api/v1/namespaces/<namespace>/services/<service>/proxy

We just add the URI to the end of the request, for instance:

/api/v1/namespaces/<namespace>/services/<service>/proxy/index.html

We can access services and pods this way

248 / 695

kubectl proxy in practice

Let's access the webui service through kubectl proxy

Exercise

Run an API proxy in the background:

kubectl proxy &

Access the webui service:

curl localhost:8001/api/v1/namespaces/default/services/webui/proxy/index.html

Terminate the proxy:

kill %1

249 / 695

kubectl port-forward in theory

What if we want to access a TCP service?

We can use kubectl port-forward instead

It will create a TCP relay to forward connections to a specific port

(of a pod, service, deployment...)

The syntax is:

kubectl port-forward service/name_of_service local_port:remote_port

If only one port number is specified, it is used for both local and remote ports

250 / 695

kubectl port-forward in practice

Let's access our remote Redis server

Exercise

Forward connections from local port 10000 to remote port 6379:

kubectl port-forward svc/redis 10000:6379 &

Connect to the Redis server:

telnet localhost 10000

Issue a few commands, e.g. INFO server then QUIT

Terminate the port forwarder:

kill %1

251 / 695

252 / 695

The Kubernetes dashboard

Previous section | Back to table of contents | Next section

253 / 695

The Kubernetes dashboard
Kubernetes resources can also be viewed with a web dashboard

We are going to deploy that dashboard with three commands:

1) actually run the dashboard

2) bypass SSL for the dashboard

3) bypass authentication for the dashboard

254 / 695

The Kubernetes dashboard
Kubernetes resources can also be viewed with a web dashboard

We are going to deploy that dashboard with three commands:

1) actually run the dashboard

2) bypass SSL for the dashboard

3) bypass authentication for the dashboard

There is an additional step to make the dashboard available from outside (we'll get to that)

255 / 695

The Kubernetes dashboard
Kubernetes resources can also be viewed with a web dashboard

We are going to deploy that dashboard with three commands:

1) actually run the dashboard

2) bypass SSL for the dashboard

3) bypass authentication for the dashboard

There is an additional step to make the dashboard available from outside (we'll get to that)

Yes, this will open our cluster to all kinds of shenanigans. Don't do this at home.

256 / 695

1) Running the dashboard

We need to create a deployment and a service for the dashboard

But also a secret, a service account, a role and a role binding

All these things can be defined in a YAML file and created with kubectl apply -f

Exercise

Create all the dashboard resources, with the following command:

kubectl apply -f ~/container.training/k8s/kubernetes-dashboard.yaml

257 / 695

2) Bypassing SSL for the dashboard

The Kubernetes dashboard uses HTTPS, but we don't have a certificate

Recent versions of Chrome (63 and later) and Edge will refuse to connect

(You won't even get the option to ignore a security warning!)

We could (and should!) get a certificate, e.g. with Let's Encrypt

... But for convenience, for this workshop, we'll forward HTTP to HTTPS

Do not do this at home, or even worse, at work!

258 / 695

https://letsencrypt.org/

Running the SSL unwrapper

We are going to run socat, telling it to accept TCP connections and relay them over SSL

Then we will expose that socat instance with a NodePort service

For convenience, these steps are neatly encapsulated into another YAML file

Exercise

Apply the convenient YAML file, and defeat SSL protection:

kubectl apply -f ~/container.training/k8s/socat.yaml

All our dashboard traffic is now clear-text, including passwords!

259 / 695

http://www.dest-unreach.org/socat/doc/socat.html

Connecting to the dashboard

Exercise

Check which port the dashboard is on:

kubectl -n kube-system get svc socat

You'll want the 3xxxx port.

Exercise

Connect to http://oneofournodes:3xxxx/

The dashboard will then ask you which authentication you want to use.

260 / 695

Dashboard authentication

We have three authentication options at this point:

token (associated with a role that has appropriate permissions)

kubeconfig (e.g. using the ~/.kube/config file from node1)

"skip" (use the dashboard "service account")

Let's use "skip": we get a bunch of warnings and don't see much

261 / 695

3) Bypass authentication for the dashboard

The dashboard documentation explains how to do this

We just need to load another YAML file!

Exercise

Grant admin privileges to the dashboard so we can see our resources:

kubectl apply -f ~/container.training/k8s/grant-admin-to-dashboard.yaml

Reload the dashboard and enjoy!

262 / 695

https://github.com/kubernetes/dashboard/wiki/Access-control#admin-privileges

3) Bypass authentication for the dashboard

The dashboard documentation explains how to do this

We just need to load another YAML file!

Exercise

Grant admin privileges to the dashboard so we can see our resources:

kubectl apply -f ~/container.training/k8s/grant-admin-to-dashboard.yaml

Reload the dashboard and enjoy!

By the way, we just added a backdoor to our Kubernetes cluster!

263 / 695

https://github.com/kubernetes/dashboard/wiki/Access-control#admin-privileges

Exposing the dashboard over HTTPS

We took a shortcut by forwarding HTTP to HTTPS inside the cluster

Let's expose the dashboard over HTTPS!

The dashboard is exposed through a ClusterIP service (internal traffic only)

We will change that into a NodePort service (accepting outside traffic)

Exercise

Edit the service:

kubectl edit service kubernetes-dashboard

264 / 695

Exposing the dashboard over HTTPS

We took a shortcut by forwarding HTTP to HTTPS inside the cluster

Let's expose the dashboard over HTTPS!

The dashboard is exposed through a ClusterIP service (internal traffic only)

We will change that into a NodePort service (accepting outside traffic)

Exercise

Edit the service:

kubectl edit service kubernetes-dashboard

NotFound?!? Y U NO WORK?!?

265 / 695

Editing the kubernetes-dashboard service

If we look at the YAML that we loaded before, we'll get a hint

266 / 695

https://github.com/jpetazzo/container.training/blob/master/k8s/kubernetes-dashboard.yaml

Editing the kubernetes-dashboard service

If we look at the YAML that we loaded before, we'll get a hint

The dashboard was created in the kube-system namespace

267 / 695

https://github.com/jpetazzo/container.training/blob/master/k8s/kubernetes-dashboard.yaml

Editing the kubernetes-dashboard service

If we look at the YAML that we loaded before, we'll get a hint

The dashboard was created in the kube-system namespace

Exercise

Edit the service:

kubectl -n kube-system edit service kubernetes-dashboard

Change type type: from ClusterIP to NodePort, save, and exit

Check the port that was assigned with kubectl -n kube-system get services

Connect to https://oneofournodes:3xxxx/ (yes, https)

268 / 695

https://github.com/jpetazzo/container.training/blob/master/k8s/kubernetes-dashboard.yaml

Running the Kubernetes dashboard securely

The steps that we just showed you are for educational purposes only!

If you do that on your production cluster, people can and will abuse it

For an in-depth discussion about securing the dashboard,
check this excellent post on Heptio's blog

269 / 695

https://blog.redlock.io/cryptojacking-tesla
https://blog.heptio.com/on-securing-the-kubernetes-dashboard-16b09b1b7aca

270 / 695

Security implications of
kubectl apply

Previous section | Back to table of contents | Next section

271 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

272 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

273 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

hides in a non-default namespace

274 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

hides in a non-default namespace

bind-mounts our nodes' filesystem

275 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

hides in a non-default namespace

bind-mounts our nodes' filesystem

inserts SSH keys in the root account (on the node)

276 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

hides in a non-default namespace

bind-mounts our nodes' filesystem

inserts SSH keys in the root account (on the node)

encrypts our data and ransoms it

277 / 695

Security implications of kubectl apply
When we do kubectl apply -f <URL>, we create arbitrary resources

Resources can be evil; imagine a deployment that ...

starts bitcoin miners on the whole cluster

hides in a non-default namespace

bind-mounts our nodes' filesystem

inserts SSH keys in the root account (on the node)

encrypts our data and ransoms it

ccc

278 / 695

kubectl apply is the new curl | sh
curl | sh is convenient

It's safe if you use HTTPS URLs from trusted sources

279 / 695

kubectl apply is the new curl | sh
curl | sh is convenient

It's safe if you use HTTPS URLs from trusted sources

kubectl apply -f is convenient

It's safe if you use HTTPS URLs from trusted sources

Example: the official setup instructions for most pod networks

280 / 695

kubectl apply is the new curl | sh
curl | sh is convenient

It's safe if you use HTTPS URLs from trusted sources

kubectl apply -f is convenient

It's safe if you use HTTPS URLs from trusted sources

Example: the official setup instructions for most pod networks

It introduces new failure modes (like if you try to apply yaml from a link that's no
longer valid)

281 / 695

282 / 695

Scaling a deployment

Previous section | Back to table of contents | Next section

283 / 695

Scaling a deployment
We will start with an easy one: the worker deployment

Exercise

Open two new terminals to check what's going on with pods and deployments:

kubectl get pods -w
kubectl get deployments -w

Now, create more worker replicas:

kubectl scale deploy/worker --replicas=10

After a few seconds, the graph in the web UI should show up.
(And peak at 10 hashes/second, just like when we were running on a single one.)

284 / 695

285 / 695

Daemon sets

Previous section | Back to table of contents | Next section

286 / 695

Daemon sets

We want to scale rng in a way that is different from how we scaled worker

We want one (and exactly one) instance of rng per node

What if we just scale up deploy/rng to the number of nodes?

nothing guarantees that the rng containers will be distributed evenly

if we add nodes later, they will not automatically run a copy of rng

if we remove (or reboot) a node, one rng container will restart elsewhere

Instead of a deployment, we will use a daemonset

287 / 695

Daemon sets in practice

Daemon sets are great for cluster-wide, per-node processes:

kube-proxy

weave (our overlay network)

monitoring agents

hardware management tools (e.g. SCSI/FC HBA agents)

etc.

They can also be restricted to run only on some nodes

288 / 695

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/#running-pods-on-only-some-nodes

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

289 / 695

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

More precisely: it doesn't have a subcommand to create a daemon set

290 / 695

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

More precisely: it doesn't have a subcommand to create a daemon set

But any kind of resource can always be created by providing a YAML description:

kubectl apply -f foo.yaml

291 / 695

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

More precisely: it doesn't have a subcommand to create a daemon set

But any kind of resource can always be created by providing a YAML description:

kubectl apply -f foo.yaml

How do we create the YAML file for our daemon set?

292 / 695

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

More precisely: it doesn't have a subcommand to create a daemon set

But any kind of resource can always be created by providing a YAML description:

kubectl apply -f foo.yaml

How do we create the YAML file for our daemon set?

option 1: read the docs

293 / 695

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/#create-a-daemonset

Creating a daemon set

Unfortunately, as of Kubernetes 1.12, the CLI cannot create daemon sets

More precisely: it doesn't have a subcommand to create a daemon set

But any kind of resource can always be created by providing a YAML description:

kubectl apply -f foo.yaml

How do we create the YAML file for our daemon set?

option 1: read the docs

option 2: vi our way out of it

294 / 695

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/#create-a-daemonset

Creating the YAML file for our daemon set

Let's start with the YAML file for the current rng resource

Exercise

Dump the rng resource in YAML:

kubectl get deploy/rng -o yaml --export >rng.yml

Edit rng.yml

Note: --export will remove "cluster-specific" information, i.e.:

namespace (so that the resource is not tied to a specific namespace)
status and creation timestamp (useless when creating a new resource)
resourceVersion and uid (these would cause... interesting problems)

295 / 695

"Casting" a resource to another

What if we just changed the kind field?

(It can't be that easy, right?)

Exercise

Change kind: Deployment to kind: DaemonSet

Save, quit

Try to create our new resource:

kubectl apply -f rng.yml

296 / 695

"Casting" a resource to another

What if we just changed the kind field?

(It can't be that easy, right?)

Exercise

Change kind: Deployment to kind: DaemonSet

Save, quit

Try to create our new resource:

kubectl apply -f rng.yml

We all knew this couldn't be that easy, right!

297 / 695

Understanding the problem

The core of the error is:

error validating data:
[ValidationError(DaemonSet.spec):
unknown field "replicas" in io.k8s.api.extensions.v1beta1.DaemonSetSpec,
...

298 / 695

Understanding the problem

The core of the error is:

error validating data:
[ValidationError(DaemonSet.spec):
unknown field "replicas" in io.k8s.api.extensions.v1beta1.DaemonSetSpec,
...

Obviously, it doesn't make sense to specify a number of replicas for a daemon set

299 / 695

Understanding the problem

The core of the error is:

error validating data:
[ValidationError(DaemonSet.spec):
unknown field "replicas" in io.k8s.api.extensions.v1beta1.DaemonSetSpec,
...

Obviously, it doesn't make sense to specify a number of replicas for a daemon set

Workaround: fix the YAML

remove the replicas field
remove the strategy field (which defines the rollout mechanism for a deployment)
remove the progressDeadlineSeconds field (also used by the rollout mechanism)
remove the status: {} line at the end

300 / 695

Understanding the problem

The core of the error is:

error validating data:
[ValidationError(DaemonSet.spec):
unknown field "replicas" in io.k8s.api.extensions.v1beta1.DaemonSetSpec,
...

Obviously, it doesn't make sense to specify a number of replicas for a daemon set

Workaround: fix the YAML

remove the replicas field
remove the strategy field (which defines the rollout mechanism for a deployment)
remove the progressDeadlineSeconds field (also used by the rollout mechanism)
remove the status: {} line at the end

Or, we could also ...

301 / 695

Use the --force, Luke

We could also tell Kubernetes to ignore these errors and try anyway

The --force flag's actual name is --validate=false

Exercise

Try to load our YAML file and ignore errors:

kubectl apply -f rng.yml --validate=false

302 / 695

Use the --force, Luke

We could also tell Kubernetes to ignore these errors and try anyway

The --force flag's actual name is --validate=false

Exercise

Try to load our YAML file and ignore errors:

kubectl apply -f rng.yml --validate=false

ǕÙȰ

303 / 695

Use the --force, Luke

We could also tell Kubernetes to ignore these errors and try anyway

The --force flag's actual name is --validate=false

Exercise

Try to load our YAML file and ignore errors:

kubectl apply -f rng.yml --validate=false

ǕÙȰ

Wait ... Now, can it be that easy?

304 / 695

Checking what we've done

Did we transform our deployment into a daemonset?

Exercise

Look at the resources that we have now:

kubectl get all

305 / 695

Checking what we've done

Did we transform our deployment into a daemonset?

Exercise

Look at the resources that we have now:

kubectl get all

We have two resources called rng:

the deployment that was existing before

the daemon set that we just created

We also have one too many pods.
(The pod corresponding to the deployment still exists.)

306 / 695

deploy/rng and ds/rng
You can have different resource types with the same name

(i.e. a deployment and a daemon set both named rng)

We still have the old rng deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/rng 1 1 1 1 18m

But now we have the new rng daemon set as well

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
daemonset.apps/rng 2 2 2 2 2 <none> 9s

307 / 695

Too many pods

If we check with kubectl get pods, we see:

one pod for the deployment (named rng-xxxxxxxxxx-yyyyy)

one pod per node for the daemon set (named rng-zzzzz)

NAME READY STATUS RESTARTS AGE
rng-54f57d4d49-7pt82 1/1 Running 0 11m
rng-b85tm 1/1 Running 0 25s
rng-hfbrr 1/1 Running 0 25s
[...]

308 / 695

Too many pods

If we check with kubectl get pods, we see:

one pod for the deployment (named rng-xxxxxxxxxx-yyyyy)

one pod per node for the daemon set (named rng-zzzzz)

NAME READY STATUS RESTARTS AGE
rng-54f57d4d49-7pt82 1/1 Running 0 11m
rng-b85tm 1/1 Running 0 25s
rng-hfbrr 1/1 Running 0 25s
[...]

The daemon set created one pod per node, except on the master node.

The master node has taints preventing pods from running there.

(To schedule a pod on this node anyway, the pod will require appropriate tolerations.)
(Off by one? We don't run these pods on the node hosting the control plane.)

309 / 695

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

What are all these pods doing?

Let's check the logs of all these rng pods

All these pods have a run=rng label:

the first pod, because that's what kubectl run does
the other ones (in the daemon set), because we copied the spec from the first one

Therefore, we can query everybody's logs using that run=rng selector

Exercise

Check the logs of all the pods having a label run=rng:

kubectl logs -l run=rng --tail 1

310 / 695

What are all these pods doing?

Let's check the logs of all these rng pods

All these pods have a run=rng label:

the first pod, because that's what kubectl run does
the other ones (in the daemon set), because we copied the spec from the first one

Therefore, we can query everybody's logs using that run=rng selector

Exercise

Check the logs of all the pods having a label run=rng:

kubectl logs -l run=rng --tail 1

It appears that all the pods are serving requests at the moment.

311 / 695

The magic of selectors

The rng service is load balancing requests to a set of pods

This set of pods is defined as "pods having the label run=rng"

Exercise

Check the selector in the rng service definition:

kubectl describe service rng

When we created additional pods with this label, they were automatically detected by
svc/rng and added as endpoints to the associated load balancer.

312 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

313 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

314 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

What would happen if we removed the run=rng label from that pod?

315 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

What would happen if we removed the run=rng label from that pod?

The replicaset would re-create it immediately.

316 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

What would happen if we removed the run=rng label from that pod?

The replicaset would re-create it immediately.

... Because what matters to the replicaset is the number of pods matching that
selector.

317 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

What would happen if we removed the run=rng label from that pod?

The replicaset would re-create it immediately.

... Because what matters to the replicaset is the number of pods matching that
selector.

But but but ... Don't we have more than one pod with run=rng now?

318 / 695

Removing the first pod from the load balancer

What would happen if we removed that pod, with kubectl delete pod ...?

The replicaset would re-create it immediately.

What would happen if we removed the run=rng label from that pod?

The replicaset would re-create it immediately.

... Because what matters to the replicaset is the number of pods matching that
selector.

But but but ... Don't we have more than one pod with run=rng now?

The answer lies in the exact selector used by the replicaset ...

319 / 695

Deep dive into selectors

Let's look at the selectors for the rng deployment and the associated replica set

Exercise

Show detailed information about the rng deployment:

kubectl describe deploy rng

Show detailed information about the rng replica:
(The second command doesn't require you to get the exact name of the replica set)

kubectl describe rs rng-yyyyyyyy
kubectl describe rs -l run=rng

320 / 695

Deep dive into selectors

Let's look at the selectors for the rng deployment and the associated replica set

Exercise

Show detailed information about the rng deployment:

kubectl describe deploy rng

Show detailed information about the rng replica:
(The second command doesn't require you to get the exact name of the replica set)

kubectl describe rs rng-yyyyyyyy
kubectl describe rs -l run=rng

The replica set selector also has a pod-template-hash, unlike the pods in our daemon set.

321 / 695

322 / 695

Updating a service through
labels and selectors

Previous section | Back to table of contents | Next section

323 / 695

Updating a service through labels and selectors

What if we want to drop the rng deployment from the load balancer?

Option 1:

destroy it

Option 2:

add an extra label to the daemon set

update the service selector to refer to that label

324 / 695

Updating a service through labels and selectors

What if we want to drop the rng deployment from the load balancer?

Option 1:

destroy it

Option 2:

add an extra label to the daemon set

update the service selector to refer to that label

Of course, option 2 offers more learning opportunities. Right?

325 / 695

Add an extra label to the daemon set

We will update the daemon set "spec"

Option 1:

edit the rng.yml file that we used earlier

load the new definition with kubectl apply

Option 2:

use kubectl edit

326 / 695

Add an extra label to the daemon set

We will update the daemon set "spec"

Option 1:

edit the rng.yml file that we used earlier

load the new definition with kubectl apply

Option 2:

use kubectl edit

If you feel like you got thisʾĻ, feel free to try directly.

We've included a few hints on the next slides for your convenience!

327 / 695

We've put resources in your resources

Reminder: a daemon set is a resource that creates more resources!

There is a difference between:

the label(s) of a resource (in the metadata block in the beginning)

the selector of a resource (in the spec block)

the label(s) of the resource(s) created by the first resource (in the template block)

You need to update the selector and the template (metadata labels are not mandatory)

The template must match the selector

(i.e. the resource will refuse to create resources that it will not select)

328 / 695

Adding our label

Let's add a label isactive: yes

In YAML, yes should be quoted; i.e. isactive: "yes"

Exercise

Update the daemon set to add isactive: "yes" to the selector and template label:

kubectl edit daemonset rng

Update the service to add isactive: "yes" to its selector:

kubectl edit service rng

329 / 695

Checking what we've done

Exercise

Check the most recent log line of all run=rng pods to confirm that exactly one per node
is now active:

kubectl logs -l run=rng --tail 1

The timestamps should give us a hint about how many pods are currently receiving traffic.

Exercise

Look at the pods that we have right now:

kubectl get pods

330 / 695

Cleaning up

The pods of the deployment and the "old" daemon set are still running

We are going to identify them programmatically

Exercise

List the pods with run=rng but without isactive=yes:

kubectl get pods -l run=rng,isactive!=yes

Remove these pods:

kubectl delete pods -l run=rng,isactive!=yes

331 / 695

Cleaning up stale pods

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rng-54f57d4d49-7pt82 1/1 Terminating 0 51m
rng-54f57d4d49-vgz9h 1/1 Running 0 22s
rng-b85tm 1/1 Terminating 0 39m
rng-hfbrr 1/1 Terminating 0 39m
rng-vplmj 1/1 Running 0 7m
rng-xbpvg 1/1 Running 0 7m
[...]

The extra pods (noted Terminating above) are going away

... But a new one (rng-54f57d4d49-vgz9h above) was restarted immediately!

332 / 695

Cleaning up stale pods

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rng-54f57d4d49-7pt82 1/1 Terminating 0 51m
rng-54f57d4d49-vgz9h 1/1 Running 0 22s
rng-b85tm 1/1 Terminating 0 39m
rng-hfbrr 1/1 Terminating 0 39m
rng-vplmj 1/1 Running 0 7m
rng-xbpvg 1/1 Running 0 7m
[...]

The extra pods (noted Terminating above) are going away

... But a new one (rng-54f57d4d49-vgz9h above) was restarted immediately!

Remember, the deployment still exists, and makes sure that one pod is up and running

If we delete the pod associated to the deployment, it is recreated automatically

333 / 695

Deleting a deployment

Exercise

Remove the rng deployment:

kubectl delete deployment rng

334 / 695

Deleting a deployment

Exercise

Remove the rng deployment:

kubectl delete deployment rng

The pod that was created by the deployment is now being terminated:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rng-54f57d4d49-vgz9h 1/1 Terminating 0 4m
rng-vplmj 1/1 Running 0 11m
rng-xbpvg 1/1 Running 0 11m
[...]

Ding, dong, the deployment is dead! And the daemon set lives on.

335 / 695

Avoiding extra pods

When we changed the definition of the daemon set, it immediately created new pods.
We had to remove the old ones manually.

How could we have avoided this?

336 / 695

Avoiding extra pods

When we changed the definition of the daemon set, it immediately created new pods.
We had to remove the old ones manually.

How could we have avoided this?

By adding the isactive: "yes" label to the pods before changing the daemon set!

This can be done programmatically with kubectl patch:

PATCH='
metadata:
 labels:
 isactive: "yes"
'
kubectl get pods -l run=rng -l controller-revision-hash -o name |
 xargs kubectl patch -p "$PATCH"

337 / 695

Labels and debugging

When a pod is misbehaving, we can delete it: another one will be recreated

But we can also change its labels

It will be removed from the load balancer (it won't receive traffic anymore)

Another pod will be recreated immediately

But the problematic pod is still here, and we can inspect and debug it

We can even re-add it to the rotation if necessary

(Very useful to troubleshoot intermittent and elusive bugs)

338 / 695

Labels and advanced rollout control

Conversely, we can add pods matching a service's selector

These pods will then receive requests and serve traffic

Examples:

one-shot pod with all debug flags enabled, to collect logs

pods created automatically, but added to rotation in a second step
(by setting their label accordingly)

This gives us building blocks for canary and blue/green deployments

339 / 695

340 / 695

Rolling updates

Previous section | Back to table of contents | Next section

341 / 695

Rolling updates
By default (without rolling updates), when a scaled resource is updated:

new pods are created

old pods are terminated

... all at the same time

if something goes wrong, ¯_(ツ)_/¯

342 / 695

Rolling updates

With rolling updates, when a resource is updated, it happens progressively

Two parameters determine the pace of the rollout: maxUnavailable and maxSurge

They can be specified in absolute number of pods, or percentage of the replicas count

At any given time ...

there will always be at least replicas-maxUnavailable pods available

there will never be more than replicas+maxSurge pods in total

there will therefore be up to maxUnavailable+maxSurge pods being updated

We have the possibility to rollback to the previous version
(if the update fails or is unsatisfactory in any way)

343 / 695

Checking current rollout parameters

Recall how we build custom reports with kubectl and jq:

Exercise

Show the rollout plan for our deployments:

kubectl get deploy -o json |
 jq ".items[] | {name:.metadata.name} + .spec.strategy.rollingUpdate"

344 / 695

Rolling updates in practice

As of Kubernetes 1.8, we can do rolling updates with:

deployments, daemonsets, statefulsets

Editing one of these resources will automatically result in a rolling update

Rolling updates can be monitored with the kubectl rollout subcommand

345 / 695

Building a new version of the worker service

Exercise

Go to the stack directory:

cd ~/container.training/stacks

Edit dockercoins/worker/worker.py; update the first sleep line to sleep 1 second

Build a new tag and push it to the registry:

#export REGISTRY=localhost:3xxxx
export TAG=v0.2
docker-compose -f dockercoins.yml build
docker-compose -f dockercoins.yml push

346 / 695

Rolling out the new worker service

Exercise

Let's monitor what's going on by opening a few terminals, and run:

kubectl get pods -w
kubectl get replicasets -w
kubectl get deployments -w

Update worker either with kubectl edit, or by running:

kubectl set image deploy worker worker=$REGISTRY/worker:$TAG

347 / 695

Rolling out the new worker service

Exercise

Let's monitor what's going on by opening a few terminals, and run:

kubectl get pods -w
kubectl get replicasets -w
kubectl get deployments -w

Update worker either with kubectl edit, or by running:

kubectl set image deploy worker worker=$REGISTRY/worker:$TAG

That rollout should be pretty quick. What shows in the web UI?

348 / 695

Give it some time

At first, it looks like nothing is happening (the graph remains at the same level)

According to kubectl get deploy -w, the deployment was updated really quickly

But kubectl get pods -w tells a different story

The old pods are still here, and they stay in Terminating state for a while

Eventually, they are terminated; and then the graph decreases significantly

This delay is due to the fact that our worker doesn't handle signals

Kubernetes sends a "polite" shutdown request to the worker, which ignores it

After a grace period, Kubernetes gets impatient and kills the container

(The grace period is 30 seconds, but can be changed if needed)

349 / 695

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods

Rolling out something invalid

What happens if we make a mistake?

Exercise

Update worker by specifying a non-existent image:

export TAG=v0.3
kubectl set image deploy worker worker=$REGISTRY/worker:$TAG

Check what's going on:

kubectl rollout status deploy worker

350 / 695

Rolling out something invalid

What happens if we make a mistake?

Exercise

Update worker by specifying a non-existent image:

export TAG=v0.3
kubectl set image deploy worker worker=$REGISTRY/worker:$TAG

Check what's going on:

kubectl rollout status deploy worker

Our rollout is stuck. However, the app is not dead.

(After a minute, it will stabilize to be 20-25% slower.)

351 / 695

What's going on with our rollout?

Why is our app a bit slower?

Because MaxUnavailable=25%

... So the rollout terminated 2 replicas out of 10 available

Okay, but why do we see 5 new replicas being rolled out?

Because MaxSurge=25%

... So in addition to replacing 2 replicas, the rollout is also starting 3 more

It rounded down the number of MaxUnavailable pods conservatively,
but the total number of pods being rolled out is allowed to be 25+25=50%

352 / 695

The nitty-gritty details

We start with 10 pods running for the worker deployment

Current settings: MaxUnavailable=25% and MaxSurge=25%

When we start the rollout:

two replicas are taken down (as per MaxUnavailable=25%)
two others are created (with the new version) to replace them
three others are created (with the new version) per MaxSurge=25%)

Now we have 8 replicas up and running, and 5 being deployed

Our rollout is stuck at this point!

353 / 695

Checking the dashboard during the bad rollout

If you haven't deployed the Kubernetes dashboard earlier, just skip this slide.

Exercise

Check which port the dashboard is on:

kubectl -n kube-system get svc socat

Note the 3xxxx port.

Exercise

Connect to http://oneofournodes:3xxxx/

354 / 695

Checking the dashboard during the bad rollout

If you haven't deployed the Kubernetes dashboard earlier, just skip this slide.

Exercise

Check which port the dashboard is on:

kubectl -n kube-system get svc socat

Note the 3xxxx port.

Exercise

Connect to http://oneofournodes:3xxxx/

We have failures in Deployments, Pods, and Replica Sets

355 / 695

Recovering from a bad rollout

We could push some v0.3 image

(the pod retry logic will eventually catch it and the rollout will proceed)

Or we could invoke a manual rollback

Exercise

Cancel the deployment and wait for the dust to settle down:

kubectl rollout undo deploy worker
kubectl rollout status deploy worker

356 / 695

Changing rollout parameters

We want to:

revert to v0.1
be conservative on availability (always have desired number of available workers)
go slow on rollout speed (update only one pod at a time)
give some time to our workers to "warm up" before starting more

The corresponding changes can be expressed in the following YAML snippet:

spec:
 template:
 spec:
 containers:
 - name: worker
 image: $REGISTRY/worker:v0.1
 strategy:
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 1
 minReadySeconds: 10

357 / 695

Applying changes through a YAML patch

We could use kubectl edit deployment worker

But we could also use kubectl patch with the exact YAML shown before

Exercise

Apply all our changes and wait for them to take effect:

kubectl patch deployment worker -p "
spec:
 template:
 spec:
 containers:
 - name: worker
 image: $REGISTRY/worker:v0.1
 strategy:
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 1
 minReadySeconds: 10
"
kubectl rollout status deployment worker
kubectl get deploy -o json worker |
 jq "{name:.metadata.name} + .spec.strategy.rollingUpdate"

358 / 695

359 / 695

Healthchecks

Previous section | Back to table of contents | Next section

360 / 695

Healthchecks
Kubernetes provides two kinds of healthchecks: liveness and readiness

Healthchecks are probes that apply to containers (not to pods)

Each container can have two (optional) probes:

liveness = is this container dead or alive?

readiness = is this container ready to serve traffic?

Different probes are available (HTTP, TCP, program execution)

Let's see the difference and how to use them!

361 / 695

Liveness probe

Indicates if the container is dead or alive

A dead container cannot come back to life

If the liveness probe fails, the container is killed

(to make really sure that it's really dead; no zombies or undeads!)

What happens next depends on the pod's restartPolicy:

Never: the container is not restarted

OnFailure or Always: the container is restarted

362 / 695

When to use a liveness probe

To indicate failures that can't be recovered

deadlocks (causing all requests to time out)

internal corruption (causing all requests to error)

If the liveness probe fails N consecutive times, the container is killed

N is the failureThreshold (3 by default)

363 / 695

Readiness probe

Indicates if the container is ready to serve traffic

If a container becomes "unready" (let's say busy!) it might be ready again soon

If the readiness probe fails:

the container is not killed

if the pod is a member of a service, it is temporarily removed

it is re-added as soon as the readiness probe passes again

364 / 695

When to use a readiness probe

To indicate temporary failures

the application can only service N parallel connections

the runtime is busy doing garbage collection or initial data load

The container is marked as "not ready" after failureThreshold failed attempts

(3 by default)

It is marked again as "ready" after successThreshold successful attempts

(1 by default)

365 / 695

Different types of probes

HTTP request

specify URL of the request (and optional headers)

any status code between 200 and 399 indicates success

TCP connection

the probe succeeds if the TCP port is open

arbitrary exec

a command is executed in the container

exit status of zero indicates success

366 / 695

Benefits of using probes

Rolling updates proceed when containers are actually ready

(as opposed to merely started)

Containers in a broken state gets killed and restarted

(instead of serving errors or timeouts)

Overloaded backends get removed from load balancer rotation

(thus improving response times across the board)

367 / 695

Example: HTTP probe

Here is a pod template for the rng web service of the DockerCoins app:

apiVersion: v1
kind: Pod
metadata:
 name: rng-with-liveness
spec:
 containers:
 - name: rng
 image: dockercoins/rng:v0.1
 livenessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 10
 periodSeconds: 1

If the backend serves an error, or takes longer than 1s, 3 times in a row, it gets killed.

368 / 695

Example: exec probe

Here is a pod template for a Redis server:

apiVersion: v1
kind: Pod
metadata:
 name: redis-with-liveness
spec:
 containers:
 - name: redis
 image: redis
 livenessProbe:
 exec:
 command: ["redis-cli", "ping"]

If the Redis process becomes unresponsive, it will be killed.

369 / 695

Details about liveness and readiness probes

Probes are executed at intervals of periodSeconds (default: 10)

The timeout for a probe is set with timeoutSeconds (default: 1)

A probe is considered successful after successThreshold successes (default: 1)

A probe is considered failing after failureThreshold failures (default: 3)

If a probe is not defined, it's as if there was an "always successful" probe

370 / 695

371 / 695

Accessing logs from the CLI

Previous section | Back to table of contents | Next section

372 / 695

Accessing logs from the CLI

The kubectl logs commands has limitations:

it cannot stream logs from multiple pods at a time

when showing logs from multiple pods, it mixes them all together

We are going to see how to do it better

373 / 695

Doing it manually

We could (if we were so inclined), write a program or script that would:

take a selector as an argument

enumerate all pods matching that selector (with kubectl get -l ...)

fork one kubectl logs --follow ... command per container

annotate the logs (the output of each kubectl logs ... process) with their origin

preserve ordering by using kubectl logs --timestamps ... and merge the output

374 / 695

Doing it manually

We could (if we were so inclined), write a program or script that would:

take a selector as an argument

enumerate all pods matching that selector (with kubectl get -l ...)

fork one kubectl logs --follow ... command per container

annotate the logs (the output of each kubectl logs ... process) with their origin

preserve ordering by using kubectl logs --timestamps ... and merge the output

We could do it, but thankfully, others did it for us already!

375 / 695

Stern

Stern is an open source project by Wercker.

From the README:

Stern allows you to tail multiple pods on Kubernetes and multiple containers within the pod.
Each result is color coded for quicker debugging.

The query is a regular expression so the pod name can easily be filtered and you don't need to
specify the exact id (for instance omitting the deployment id). If a pod is deleted it gets
removed from tail and if a new pod is added it automatically gets tailed.

Exactly what we need!

376 / 695

https://github.com/wercker/stern
http://www.wercker.com/

Installing Stern

Run stern (without arguments) to check if it's installed:

$ stern
Tail multiple pods and containers from Kubernetes

Usage:
stern pod-query [flags]

If it is not installed, the easiest method is to download a binary release

The following commands will install Stern on a Linux Intel 64 bit machine:

sudo curl -L -o /usr/local/bin/stern \
 https://github.com/wercker/stern/releases/download/1.8.0/stern_linux_amd64
sudo chmod +x /usr/local/bin/stern

377 / 695

https://github.com/wercker/stern/releases

Using Stern

There are two ways to specify the pods for which we want to see the logs:

-l followed by a selector expression (like with many kubectl commands)

with a "pod query", i.e. a regex used to match pod names

These two ways can be combined if necessary

Exercise

View the logs for all the rng containers:

stern rng

378 / 695

Stern convenient options

The --tail N flag shows the last N lines for each container

(Instead of showing the logs since the creation of the container)

The -t / --timestamps flag shows timestamps

The --all-namespaces flag is self-explanatory

Exercise

View what's up with the weave system containers:

stern --tail 1 --timestamps --all-namespaces weave

379 / 695

Using Stern with a selector

When specifying a selector, we can omit the value for a label

This will match all objects having that label (regardless of the value)

Everything created with kubectl run has a label run

We can use that property to view the logs of all the pods created with kubectl run

Exercise

View the logs for all the things started with kubectl run:

stern -l run

380 / 695

381 / 695

Centralized logging

Previous section | Back to table of contents | Next section

382 / 695

Centralized logging

Using kubectl or stern is simple; but it has drawbacks:

when a node goes down, its logs are not available anymore

we can only dump or stream logs; we want to search/index/count...

We want to send all our logs to a single place

We want to parse them (e.g. for HTTP logs) and index them

We want a nice web dashboard

383 / 695

Centralized logging

Using kubectl or stern is simple; but it has drawbacks:

when a node goes down, its logs are not available anymore

we can only dump or stream logs; we want to search/index/count...

We want to send all our logs to a single place

We want to parse them (e.g. for HTTP logs) and index them

We want a nice web dashboard

We are going to deploy an EFK stack

384 / 695

What is EFK?

EFK is three components:

ElasticSearch (to store and index log entries)

Fluentd (to get container logs, process them, and put them in ElasticSearch)

Kibana (to view/search log entries with a nice UI)

The only component that we need to access from outside the cluster will be Kibana

385 / 695

Deploying EFK on our cluster

We are going to use a YAML file describing all the required resources

Exercise

Load the YAML file into our cluster:

kubectl apply -f ~/container.training/k8s/efk.yaml

If we look at the YAML file, we see that it creates a daemon set, two deployments, two
services, and a few roles and role bindings (to give fluentd the required permissions).

386 / 695

https://github.com/jpetazzo/container.training/blob/master/k8s/efk.yaml

The itinerary of a log line (before Fluentd)

A container writes a line on stdout or stderr

Both are typically piped to the container engine (Docker or otherwise)

The container engine reads the line, and sends it to a logging driver

The timestamp and stream (stdout or stderr) is added to the log line

With the default configuration for Kubernetes, the line is written to a JSON file

(/var/log/containers/pod-name_namespace_container-id.log)

That file is read when we invoke kubectl logs; we can access it directly too

387 / 695

The itinerary of a log line (with Fluentd)

Fluentd runs on each node (thanks to a daemon set)

It binds-mounts /var/log/containers from the host (to access these files)

It continuously scans this directory for new files; reads them; parses them

Each log line becomes a JSON object, fully annotated with extra information:
container id, pod name, Kubernetes labels ...

These JSON objects are stored in ElasticSearch

ElasticSearch indexes the JSON objects

We can access the logs through Kibana (and perform searches, counts, etc.)

388 / 695

Accessing Kibana

Kibana offers a web interface that is relatively straightforward

Let's check it out!

Exercise

Check which NodePort was allocated to Kibana:

kubectl get svc kibana

With our web browser, connect to Kibana

389 / 695

Using Kibana

Note: this is not a Kibana workshop! So this section is deliberately very terse.

The first time you connect to Kibana, you must "configure an index pattern"

Just use the one that is suggested, @timestamp*

Then click "Discover" (in the top-left corner)

You should see container logs

Advice: in the left column, select a few fields to display, e.g.:

kubernetes.host, kubernetes.pod_name, stream, log

*If you don't see @timestamp, it's probably because no logs exist yet.
Wait a bit, and double-check the logging pipeline!

390 / 695

Caveat emptor

We are using EFK because it is relatively straightforward to deploy on Kubernetes, without
having to redeploy or reconfigure our cluster. But it doesn't mean that it will always be the
best option for your use-case. If you are running Kubernetes in the cloud, you might
consider using the cloud provider's logging infrastructure (if it can be integrated with
Kubernetes).

The deployment method that we will use here has been simplified: there is only one
ElasticSearch node. In a real deployment, you might use a cluster, both for performance
and reliability reasons. But this is outside of the scope of this chapter.

The YAML file that we used creates all the resources in the default namespace, for
simplicity. In a real scenario, you will create the resources in the kube-system namespace
or in a dedicated namespace.

391 / 695

392 / 695

Managing stacks with Helm

Previous section | Back to table of contents | Next section

393 / 695

Managing stacks with Helm

We created our first resources with kubectl run, kubectl expose ...

We have also created resources by loading YAML files with kubectl apply -f

For larger stacks, managing thousands of lines of YAML is unreasonable

These YAML bundles need to be customized with variable parameters

(E.g.: number of replicas, image version to use ...)

It would be nice to have an organized, versioned collection of bundles

It would be nice to be able to upgrade/rollback these bundles carefully

Helm is an open source project offering all these things!

394 / 695

https://helm.sh/

Helm concepts

helm is a CLI tool

tiller is its companion server-side component

A "chart" is an archive containing templatized YAML bundles

Charts are versioned

Charts can be stored on private or public repositories

395 / 695

Installing Helm

If the helm CLI is not installed in your environment, install it

Exercise

Check if helm is installed:

helm

If it's not installed, run the following command:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

396 / 695

Installing Tiller

Tiller is composed of a service and a deployment in the kube-system namespace

They can be managed (installed, upgraded...) with the helm CLI

Exercise

Deploy Tiller:

helm init

If Tiller was already installed, don't worry: this won't break it.

At the end of the install process, you will see:

Happy Helming!

397 / 695

Fix account permissions

Helm permission model requires us to tweak permissions

In a more realistic deployment, you might create per-user or per-team service accounts,
roles, and role bindings

Exercise

Grant cluster-admin role to kube-system:default service account:

kubectl create clusterrolebinding add-on-cluster-admin \
 --clusterrole=cluster-admin --serviceaccount=kube-system:default

(Defining the exact roles and permissions on your cluster requires a deeper knowledge of
Kubernetes' RBAC model. The command above is fine for personal and development
clusters.)

398 / 695

View available charts

A public repo is pre-configured when installing Helm

We can view available charts with helm search (and an optional keyword)

Exercise

View all available charts:

helm search

View charts related to prometheus:

helm search prometheus

399 / 695

Install a chart

Most charts use LoadBalancer service types by default

Most charts require persistent volumes to store data

We need to relax these requirements a bit

Exercise

Install the Prometheus metrics collector on our cluster:

helm install stable/prometheus \
 --set server.service.type=NodePort \
 --set server.persistentVolume.enabled=false

Where do these --set options come from?

400 / 695

Inspecting a chart

helm inspect shows details about a chart (including available options)

Exercise

See the metadata and all available options for stable/prometheus:

helm inspect stable/prometheus

The chart's metadata includes an URL to the project's home page.

(Sometimes it conveniently points to the documentation for the chart.)

401 / 695

Creating a chart

We are going to show a way to create a very simplified chart

In a real chart, lots of things would be templatized

(Resource names, service types, number of replicas...)

Exercise

Create a sample chart:

helm create dockercoins

Move away the sample templates and create an empty template directory:

mv dockercoins/templates dockercoins/default-templates
mkdir dockercoins/templates

402 / 695

Exporting the YAML for our application

The following section assumes that DockerCoins is currently running

Exercise

Create one YAML file for each resource that we need:

while read kind name; do
 kubectl get -o yaml --export $kind $name > dockercoins/templates/$name-$kind.yaml
done <<EOF
deployment worker
deployment hasher
daemonset rng
deployment webui
deployment redis
service hasher
service rng
service webui
service redis
EOF

403 / 695

Testing our helm chart

Exercise

Let's install our helm chart! (dockercoins is the path to the chart)

helm install dockercoins

404 / 695

Testing our helm chart

Exercise

Let's install our helm chart! (dockercoins is the path to the chart)

helm install dockercoins

Since the application is already deployed, this will fail:
Error: release loitering-otter failed: services "hasher" already exists

To avoid naming conflicts, we will deploy the application in another namespace

405 / 695

406 / 695

Namespaces

Previous section | Back to table of contents | Next section

407 / 695

Namespaces
We cannot have two resources with the same name

(Or can we...?)

408 / 695

Namespaces
We cannot have two resources with the same name

(Or can we...?)

We cannot have two resources of the same type with the same name

(But it's OK to have a rng service, a rng deployment, and a rng daemon set!)

409 / 695

Namespaces
We cannot have two resources with the same name

(Or can we...?)

We cannot have two resources of the same type with the same name

(But it's OK to have a rng service, a rng deployment, and a rng daemon set!)

We cannot have two resources of the same type with the same name in the same
namespace

(But it's OK to have e.g. two rng services in different namespaces!)

410 / 695

Namespaces
We cannot have two resources with the same name

(Or can we...?)

We cannot have two resources of the same type with the same name

(But it's OK to have a rng service, a rng deployment, and a rng daemon set!)

We cannot have two resources of the same type with the same name in the same
namespace

(But it's OK to have e.g. two rng services in different namespaces!)

In other words: the tuple (type, name, namespace) needs to be unique

(In the resource YAML, the type is called Kind)

411 / 695

Pre-existing namespaces

If we deploy a cluster with kubeadm, we have three namespaces:

default (for our applications)

kube-system (for the control plane)

kube-public (contains one secret used for cluster discovery)

If we deploy differently, we may have different namespaces

412 / 695

Creating namespaces

Creating a namespace is done with the kubectl create namespace command:

kubectl create namespace blue

We can also get fancy and use a very minimal YAML snippet, e.g.:

kubectl apply -f- <<EOF
apiVersion: v1
kind: Namespace
metadata:
 name: blue
EOF

The two methods above are identical

If we are using a tool like Helm, it will create namespaces automatically

413 / 695

Using namespaces

We can pass a -n or --namespace flag to most kubectl commands:

kubectl -n blue get svc

We can also use contexts

A context is a (user, cluster, namespace) tuple

We can manipulate contexts with the kubectl config command

414 / 695

Creating a context

We are going to create a context for the blue namespace

Exercise

View existing contexts to see the cluster name and the current user:

kubectl config get-contexts

Create a new context:

kubectl config set-context blue --namespace=blue \
 --cluster=kubernetes --user=kubernetes-admin

We have created a context; but this is just some configuration values.

The namespace doesn't exist yet.

415 / 695

Using a context

Let's switch to our new context and deploy the DockerCoins chart

Exercise

Use the blue context:

kubectl config use-context blue

Deploy DockerCoins:

helm install dockercoins

In the last command line, dockercoins is just the local path where we created our Helm
chart before.

416 / 695

Viewing the deployed app

Let's see if our Helm chart worked correctly!

Exercise

Retrieve the port number allocated to the webui service:

kubectl get svc webui

Point our browser to http://X.X.X.X:3xxxx

Note: it might take a minute or two for the app to be up and running.

417 / 695

Namespaces and isolation

Namespaces do not provide isolation

A pod in the green namespace can communicate with a pod in the blue namespace

A pod in the default namespace can communicate with a pod in the kube-system
namespace

CoreDNS uses a different subdomain for each namespace

Example: from any pod in the cluster, you can connect to the Kubernetes API with:

https://kubernetes.default.svc.cluster.local:443/

418 / 695

Isolating pods

Actual isolation is implemented with network policies

Network policies are resources (like deployments, services, namespaces...)

Network policies specify which flows are allowed:

between pods

from pods to the outside world

and vice-versa

419 / 695

Switch back to the default namespace

Let's make sure that we don't run future exercises in the blue namespace

Exercise

View the names of the contexts:

kubectl config get-contexts

Switch back to the original context:

kubectl config use-context kubernetes-admin@kubernetes

420 / 695

Switching namespaces more easily

Defining a new context for each namespace can be cumbersome

We can also alter the current context with this one-liner:

kubectl config set-context --current --namespace=foo

We can also use a little helper tool called kubens:

Switch to namespace foo
kubens foo
Switch back to the previous namespace
kubens -

421 / 695

kubens and kubectx
With kubens, we can switch quickly between namespaces

With kubectx, we can switch quickly between contexts

Both tools are simple shell scripts available from https://github.com/ahmetb/kubectx

On our clusters, they are installed as kns and kctx

(for brevity and to avoid completion clashes between kubectx and kubectl)

422 / 695

https://github.com/ahmetb/kubectx

kube-ps1
It's easy to lose track of our current cluster / context / namespace

kube-ps1 makes it easy to track these, by showing them in our shell prompt

It's a simple shell script availble from https://github.com/jonmosco/kube-ps1

On our clusters, kube-ps1 is installed and included in PS1:

[123.45.67.89] (kubernetes-admin@kubernetes:default) docker@node1 ~

(The highlighted part is context:namespace, managed by kube-ps1)

Highly recommended if you work across multiple contexts or namespaces!

423 / 695

https://github.com/jonmosco/kube-ps1

424 / 695

Network policies

Previous section | Back to table of contents | Next section

425 / 695

Network policies
Namespaces help us to organize resources

Namespaces do not provide isolation

By default, every pod can contact every other pod

By default, every service accepts traffic from anyone

If we want this to be different, we need network policies

426 / 695

What's a network policy?

A network policy is defined by the following things.

A pod selector indicating which pods it applies to

e.g.: "all pods in namespace blue with the label zone=internal"

A list of ingress rules indicating which inbound traffic is allowed

e.g.: "TCP connections to ports 8000 and 8080 coming from pods with label zone=dmz,
and from the external subnet 4.42.6.0/24, except 4.42.6.5"

A list of egress rules indicating which outbound traffic is allowed

A network policy can provide ingress rules, egress rules, or both.

427 / 695

How do network policies apply?

A pod can be "selected" by any number of network policies

If a pod isn't selected by any network policy, then its traffic is unrestricted

(In other words: in the absence of network policies, all traffic is allowed)

If a pod is selected by at least one network policy, then all traffic is blocked ...

... unless it is explicitly allowed by one of these network policies

428 / 695

Traffic filtering is flow-oriented

Network policies deal with connections, not individual packets

Example: to allow HTTP (80/tcp) connections to pod A, you only need an ingress rule

(You do not need a matching egress rule to allow response traffic to go through)

This also applies for UDP traffic

(Allowing DNS traffic can be done with a single rule)

Network policy implementations use stateful connection tracking

429 / 695

Pod-to-pod traffic

Connections from pod A to pod B have to be allowed by both pods:

pod A has to be unrestricted, or allow the connection as an egress rule

pod B has to be unrestricted, or allow the connection as an ingress rule

As a consequence: if a network policy restricts traffic going from/to a pod,
the restriction cannot be overridden by a network policy selecting another pod

This prevents an entity managing network policies in namespace A (but without
permission to do so in namespace B) from adding network policies giving them access
to namespace B

430 / 695

The rationale for network policies

In network security, it is generally considered better to "deny all, then allow selectively"

(The other approach, "allow all, then block selectively" makes it too easy to leave holes)

As soon as one network policy selects a pod, the pod enters this "deny all" logic

Further network policies can open additional access

Good network policies should be scoped as precisely as possible

In particular: make sure that the selector is not too broad

(Otherwise, you end up affecting pods that were otherwise well secured)

431 / 695

Our first network policy

This is our game plan:

run a web server in a pod

create a network policy to block all access to the web server

create another network policy to allow access only from specific pods

432 / 695

Running our test web server

Exercise

Let's use the nginx image:

kubectl run testweb --image=nginx

Find out the IP address of the pod with one of these two commands:

kubectl get pods -o wide -l run=testweb
IP=$(kubectl get pods -l run=testweb -o json | jq -r .items[0].status.podIP)

Check that we can connect to the server:

curl $IP

The curl command should show us the "Welcome to nginx!" page.

433 / 695

Adding a very restrictive network policy

The policy will select pods with the label run=testweb

It will specify an empty list of ingress rules (matching nothing)

Exercise

Apply the policy in this YAML file:

kubectl apply -f ~/container.training/k8s/netpol-deny-all-for-testweb.yaml

Check if we can still access the server:

curl $IP

The curl command should now time out.

434 / 695

Looking at the network policy

This is the file that we applied:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-all-for-testweb
spec:
 podSelector:
 matchLabels:
 run: testweb
 ingress: []

435 / 695

Allowing connections only from specific pods

We want to allow traffic from pods with the label run=testcurl

Reminder: this label is automatically applied when we do kubectl run testcurl ...

Exercise

Apply another policy:

kubectl apply -f ~/container.training/k8s/netpol-allow-testcurl-for-testweb.yaml

436 / 695

Looking at the network policy

This is the second file that we applied:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-testcurl-for-testweb
spec:
 podSelector:
 matchLabels:
 run: testweb
 ingress:
 - from:
 - podSelector:
 matchLabels:
 run: testcurl

437 / 695

Testing the network policy

Let's create pods with, and without, the required label

Exercise

Try to connect to testweb from a pod with the run=testcurl label:

kubectl run testcurl --rm -i --image=centos -- curl -m3 $IP

Try to connect to testweb with a different label:

kubectl run testkurl --rm -i --image=centos -- curl -m3 $IP

The first command will work (and show the "Welcome to nginx!" page).

The second command will fail and time out after 3 seconds.

(The timeout is obtained with the -m3 option.)

438 / 695

An important warning

Some network plugins only have partial support for network policies

For instance, Weave doesn't support ipBlock (yet)

Weave added support for egress rules in version 2.4 (released in July 2018)

Unsupported features might be silently ignored

(Making you believe that you are secure, when you're not)

439 / 695

https://github.com/weaveworks/weave/issues/3168
https://github.com/weaveworks/weave/pull/3313

Network policies, pods, and services

Network policies apply to pods

A service can select multiple pods

(And load balance traffic across them)

It is possible that we can connect to some pods, but not some others

(Because of how network policies have been defined for these pods)

In that case, connections to the service will randomly pass or fail

(Depending on whether the connection was sent to a pod that we have access to or not)

440 / 695

Network policies and namespaces

A good strategy is to isolate a namespace, so that:

all the pods in the namespace can communicate together

other namespaces cannot access the pods

external access has to be enabled explicitly

Let's see what this would look like for the DockerCoins app!

441 / 695

Network policies for DockerCoins

We are going to apply two policies

The first policy will prevent traffic from other namespaces

The second policy will allow traffic to the webui pods

That's all we need for that app!

442 / 695

Blocking traffic from other namespaces

This policy selects all pods in the current namespace.

It allows traffic only from pods in the current namespace.

(An empty podSelector means "all pods".)

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-from-other-namespaces
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

443 / 695

Allowing traffic to webui pods

This policy selects all pods with label run=webui.

It allows traffic from any source.

(An empty from fields means "all sources".)

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-webui
spec:
 podSelector:
 matchLabels:
 run: webui
 ingress:
 - from: []

444 / 695

Applying both network policies

Both network policies are declared in the file k8s/netpol-dockercoins.yaml

Exercise

Apply the network policies:

kubectl apply -f ~/container.training/k8s/netpol-dockercoins.yaml

Check that we can still access the web UI from outside
(and that the app is still working correctly!)

Check that we can't connect anymore to rng or hasher through their ClusterIP

Note: using kubectl proxy or kubectl port-forward allows us to connect regardless of
existing network policies. This allows us to debug and troubleshoot easily, without having
to poke holes in our firewall.

445 / 695

Cleaning up our network policies

The network policies that we have installed block all traffic to the default namespace

We should remove them, otherwise further exercises will fail!

Exercise

Remove all network policies:

kubectl delete networkpolicies --all

446 / 695

Protecting the control plane

Should we add network policies to block unauthorized access to the control plane?

(etcd, API server, etc.)

447 / 695

Protecting the control plane

Should we add network policies to block unauthorized access to the control plane?

(etcd, API server, etc.)

At first, it seems like a good idea ...

448 / 695

Protecting the control plane

Should we add network policies to block unauthorized access to the control plane?

(etcd, API server, etc.)

At first, it seems like a good idea ...

But it shouldn't be necessary:

not all network plugins support network policies

the control plane is secured by other methods (mutual TLS, mostly)

the code running in our pods can reasonably expect to contact the API
(and it can do so safely thanks to the API permission model)

If we block access to the control plane, we might disrupt legitimate code

... Without necessarily improving security

449 / 695

Further resources

As always, the Kubernetes documentation is a good starting point

The API documentation has a lot of detail about the format of various objects:

NetworkPolicy

NetworkPolicySpec

NetworkPolicyIngressRule

etc.

And two resources by Ahmet Alp Balkan:

a very good talk about network policies at KubeCon North America 2017

a repository of ready-to-use recipes for network policies

450 / 695

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#networkpolicy-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#networkpolicyspec-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#networkpolicyingressrule-v1-networking-k8s-io
https://ahmet.im/
https://www.youtube.com/watch?list=PLj6h78yzYM2P-3-xqvmWaZbbI1sW-ulZb&v=3gGpMmYeEO8
https://github.com/ahmetb/kubernetes-network-policy-recipes

451 / 695

Authentication and
authorization

Previous section | Back to table of contents | Next section

452 / 695

Authentication and authorization
And first, a little refresher!

Authentication = verifying the identity of a person

On a UNIX system, we can authenticate with login+password, SSH keys ...

Authorization = listing what they are allowed to do

On a UNIX system, this can include file permissions, sudoer entries ...

Sometimes abbreviated as "authn" and "authz"

In good modular systems, these things are decoupled

(so we can e.g. change a password or SSH key without having to reset access rights)

453 / 695

Authentication in Kubernetes

When the API server receives a request, it tries to authenticate it

(it examines headers, certificates ... anything available)

Many authentication methods are available and can be used simultaneously

(we will see them on the next slide)

It's the job of the authentication method to produce:

the user name
the user ID
a list of groups

The API server doesn't interpret these; it'll be the job of authorizers

454 / 695

Authentication methods

TLS client certificates

(that's what we've been doing with kubectl so far)

Bearer tokens

(a secret token in the HTTP headers of the request)

HTTP basic auth

(carrying user and password in a HTTP header)

Authentication proxy

(sitting in front of the API and setting trusted headers)

455 / 695

https://en.wikipedia.org/wiki/Basic_access_authentication

Anonymous requests

If any authentication method rejects a request, it's denied

(401 Unauthorized HTTP code)

If a request is neither accepted nor accepted by anyone, it's anonymous

the user name is system:anonymous

the list of groups is [system:unauthenticated]

By default, the anonymous user can't do anything

(that's what you get if you just curl the Kubernetes API)

456 / 695

Authentication with TLS certificates

This is enabled in most Kubernetes deployments

The user name is derived from the CN in the client certificates

The groups are derived from the O fields in the client certificate

From the point of view of the Kubernetes API, users do not exist

(i.e. they are not stored in etcd or anywhere else)

Users can be created (and given membership to groups) independently of the API

The Kubernetes API can be set up to use your custom CA to validate client certs

457 / 695

Viewing our admin certificate

Let's inspect the certificate we've been using all this time!

Exercise

This command will show the CN and O fields for our certificate:

kubectl config view \
 --raw \
 -o json \
 | jq -r .users[0].user[\"client-certificate-data\"] \
 | base64 -d \
 | openssl x509 -text \
 | grep Subject:

Let's break down that command together! υ

458 / 695

Breaking down the command

kubectl config view shows the Kubernetes user configuration
--raw includes certificate information (which shows as REDACTED otherwise)
-o json outputs the information in JSON format
| jq ... extracts the field with the user certificate (in base64)
| base64 -d decodes the base64 format (now we have a PEM file)
| openssl x509 -text parses the certificate and outputs it as plain text
| grep Subject: shows us the line that interests us

→ We are user kubernetes-admin, in group system:masters.

459 / 695

User certificates in practice

The Kubernetes API server does not support certificate revocation

(see issue #18982)

As a result, we cannot easily suspend a user's access

There are workarounds, but they are very inconvenient:

issue short-lived certificates (e.g. 24 hours) and regenerate them often

re-create the CA and re-issue all certificates in case of compromise

grant permissions to individual users, not groups
(and remove all permissions to a compromised user)

Until this is fixed, we probably want to use other methods

460 / 695

https://github.com/kubernetes/kubernetes/issues/18982

Authentication with tokens

Tokens are passed as HTTP headers:

Authorization: Bearer and-then-here-comes-the-token

Tokens can be validated through a number of different methods:

static tokens hard-coded in a file on the API server

bootstrap tokens (special case to create a cluster or join nodes)

OpenID Connect tokens (to delegate authentication to compatible OAuth2 providers)

service accounts (these deserve more details, coming right up!)

461 / 695

https://kubernetes.io/docs/reference/access-authn-authz/bootstrap-tokens/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens

Service accounts

A service account is a user that exists in the Kubernetes API

(it is visible with e.g. kubectl get serviceaccounts)

Service accounts can therefore be created / updated dynamically

(they don't require hand-editing a file and restarting the API server)

A service account is associated with a set of secrets

(the kind that you can view with kubectl get secrets)

Service accounts are generally used to grant permissions to applications, services ...

(as opposed to humans)

462 / 695

Token authentication in practice

We are going to list existing service accounts

Then we will extract the token for a given service account

And we will use that token to authenticate with the API

463 / 695

Listing service accounts

Exercise

The resource name is serviceaccount or sa in short:

kubectl get sa

There should be just one service account in the default namespace: default.

464 / 695

Finding the secret

Exercise

List the secrets for the default service account:

kubectl get sa default -o yaml
SECRET=$(kubectl get sa default -o json | jq -r .secrets[0].name)

It should be named default-token-XXXXX.

465 / 695

Extracting the token

The token is stored in the secret, wrapped with base64 encoding

Exercise

View the secret:

kubectl get secret $SECRET -o yaml

Extract the token and decode it:

TOKEN=$(kubectl get secret $SECRET -o json \
 | jq -r .data.token | base64 -d)

466 / 695

Using the token

Let's send a request to the API, without and with the token

Exercise

Find the ClusterIP for the kubernetes service:

kubectl get svc kubernetes
API=$(kubectl get svc kubernetes -o json | jq -r .spec.clusterIP)

Connect without the token:

curl -k https://$API

Connect with the token:

curl -k -H "Authorization: Bearer $TOKEN" https://$API

467 / 695

Results

In both cases, we will get a "Forbidden" error

Without authentication, the user is system:anonymous

With authentication, it is shown as system:serviceaccount:default:default

The API "sees" us as a different user

But neither user has any right, so we can't do nothin'

Let's change that!

468 / 695

Authorization in Kubernetes

There are multiple ways to grant permissions in Kubernetes, called authorizers:

Node Authorization (used internally by kubelet; we can ignore it)

Attribute-based access control (powerful but complex and static; ignore it too)

Webhook (each API request is submitted to an external service for approval)

Role-based access control (associates permissions to users dynamically)

The one we want is the last one, generally abbreviated as RBAC

469 / 695

https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://kubernetes.io/docs/reference/access-authn-authz/abac/
https://kubernetes.io/docs/reference/access-authn-authz/webhook/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Role-based access control

RBAC allows to specify fine-grained permissions

Permissions are expressed as rules

A rule is a combination of:

verbs like create, get, list, update, delete ...

resources (as in "API resource", like pods, nodes, services ...)

resource names (to specify e.g. one specific pod instead of all pods)

in some case, subresources (e.g. logs are subresources of pods)

470 / 695

https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-resources

From rules to roles to rolebindings

A role is an API object containing a list of rules

Example: role "external-load-balancer-configurator" can:

[list, get] resources [endpoints, services, pods]
[update] resources [services]

A rolebinding associates a role with a user

Example: rolebinding "external-load-balancer-configurator":

associates user "external-load-balancer-configurator"
with role "external-load-balancer-configurator"

Yes, there can be users, roles, and rolebindings with the same name

It's a good idea for 1-1-1 bindings; not so much for 1-N ones

471 / 695

Cluster-scope permissions

API resources Role and RoleBinding are for objects within a namespace

We can also define API resources ClusterRole and ClusterRoleBinding

These are a superset, allowing to:

specify actions on cluster-wide objects (like nodes)

operate across all namespaces

We can create Role and RoleBinding resources within a namespaces

ClusterRole and ClusterRoleBinding resources are global

472 / 695

Pods and service accounts

A pod can be associated to a service account

by default, it is associated to the default service account

as we've seen earlier, this service account has no permission anyway

The associated token is exposed into the pod's filesystem

(in /var/run/secrets/kubernetes.io/serviceaccount/token)

Standard Kubernetes tooling (like kubectl) will look for it there

So Kubernetes tools running in a pod will automatically use the service account

473 / 695

In practice

We are going to create a service account

We will use an existing cluster role (view)

We will bind together this role and this service account

Then we will run a pod using that service account

In this pod, we will install kubectl and check our permissions

474 / 695

Creating a service account

We will call the new service account viewer

(note that nothing prevents us from calling it view, like the role)

Exercise

Create the new service account:

kubectl create serviceaccount viewer

List service accounts now:

kubectl get serviceaccounts

475 / 695

Binding a role to the service account

Binding a role = creating a rolebinding object

We will call that object viewercanview

(but again, we could call it view)

Exercise

Create the new role binding:

kubectl create rolebinding viewercanview \
 --clusterrole=view \
 --serviceaccount=default:viewer

It's important to note a couple of details in these flags ...

476 / 695

Roles vs Cluster Roles

We used --clusterrole=view

What would have happened if we had used --role=view?

we would have bound the role view from the local namespace
(instead of the cluster role view)

the command would have worked fine (no error)

but later, our API requests would have been denied

This is a deliberate design decision

(we can reference roles that don't exist, and create/update them later)

477 / 695

Users vs Service Accounts

We used --serviceaccount=default:viewer

What would have happened if we had used --user=default:viewer?

we would have bound the role to a user instead of a service account

again, the command would have worked fine (no error)

... but our API requests would have been denied later

What's about the default: prefix?

that's the namespace of the service account

yes, it could be inferred from context, but ... kubectl requires it

478 / 695

Testing

We will run an alpine pod and install kubectl there

Exercise

Run a one-time pod:

kubectl run eyepod --rm -ti --restart=Never \
 --serviceaccount=viewer \
 --image alpine

Install curl, then use it to install kubectl:

apk add --no-cache curl
URLBASE=https://storage.googleapis.com/kubernetes-release/release
KUBEVER=$(curl -s $URLBASE/stable.txt)
curl -LO $URLBASE/$KUBEVER/bin/linux/amd64/kubectl
chmod +x kubectl

479 / 695

Running kubectl in the pod

We'll try to use our view permissions, then to create an object

Exercise

Check that we can, indeed, view things:

./kubectl get all

But that we can't create things:

./kubectl run tryme --image=nginx

Exit the container with exit or ^D

480 / 695

Testing directly with kubectl
We can also check for permission with kubectl auth can-i:

kubectl auth can-i list nodes
kubectl auth can-i create pods
kubectl auth can-i get pod/name-of-pod
kubectl auth can-i get /url-fragment-of-api-request/
kubectl auth can-i '*' services

And we can check permissions on behalf of other users:

kubectl auth can-i list nodes \
 --as some-user
kubectl auth can-i list nodes \
 --as system:serviceaccount:<namespace>:<name-of-service-account>

481 / 695

482 / 695

Exposing HTTP services with
Ingress resources

Previous section | Back to table of contents | Next section

483 / 695

Exposing HTTP services with Ingress resources
Services give us a way to access a pod or a set of pods

Services can be exposed to the outside world:

with type NodePort (on a port >30000)

with type LoadBalancer (allocating an external load balancer)

What about HTTP services?

how can we expose webui, rng, hasher?

the Kubernetes dashboard?

a new version of webui?

484 / 695

Exposing HTTP services

If we use NodePort services, clients have to specify port numbers

(i.e. http://xxxxx:31234 instead of just http://xxxxx)

LoadBalancer services are nice, but:

they are not available in all environments

they often carry an additional cost (e.g. they provision an ELB)

they require one extra step for DNS integration
(waiting for the LoadBalancer to be provisioned; then adding it to DNS)

We could build our own reverse proxy

485 / 695

http://xxxxx:31234/
http://xxxxx/

Building a custom reverse proxy

There are many options available:

Apache, HAProxy, Hipache, NGINX, Traefik, ...

(look at jpetazzo/aiguillage for a minimal reverse proxy configuration using NGINX)

Most of these options require us to update/edit configuration files after each change

Some of them can pick up virtual hosts and backends from a configuration store

Wouldn't it be nice if this configuration could be managed with the Kubernetes API?

486 / 695

https://github.com/jpetazzo/aiguillage

Building a custom reverse proxy

There are many options available:

Apache, HAProxy, Hipache, NGINX, Traefik, ...

(look at jpetazzo/aiguillage for a minimal reverse proxy configuration using NGINX)

Most of these options require us to update/edit configuration files after each change

Some of them can pick up virtual hosts and backends from a configuration store

Wouldn't it be nice if this configuration could be managed with the Kubernetes API?

Enter¹ Ingress resources!

¹ Pun maybe intended.

487 / 695

https://github.com/jpetazzo/aiguillage

Ingress resources

Kubernetes API resource (kubectl get ingress/ingresses/ing)

Designed to expose HTTP services

Basic features:

load balancing
SSL termination
name-based virtual hosting

Can also route to different services depending on:

URI path (e.g. /api→api-service, /static→assets-service)
Client headers, including cookies (for A/B testing, canary deployment...)
and more!

488 / 695

Principle of operation

Step 1: deploy an ingress controller

ingress controller = load balancer + control loop

the control loop watches over ingress resources, and configures the LB accordingly

Step 2: setup DNS

associate DNS entries with the load balancer address

Step 3: create ingress resources

the ingress controller picks up these resources and configures the LB

Step 4: profit!

489 / 695

Ingress in action

We will deploy the Traefik ingress controller

this is an arbitrary choice

maybe motivated by the fact that Traefik releases are named after cheeses

For DNS, we will use nip.io

*.1.2.3.4.nip.io resolves to 1.2.3.4

We will create ingress resources for various HTTP services

490 / 695

http://nip.io/

Deploying pods listening on port 80

We want our ingress load balancer to be available on port 80

We could do that with a LoadBalancer service

... but it requires support from the underlying infrastructure

We could use pods specifying hostPort: 80

... but with most CNI plugins, this doesn't work or require additional setup

We could use a NodePort service

... but that requires changing the --service-node-port-range flag in the API server

Last resort: the hostNetwork mode

491 / 695

https://github.com/kubernetes/kubernetes/issues/23920
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

Without hostNetwork
Normally, each pod gets its own network namespace

(sometimes called sandbox or network sandbox)

An IP address is associated to the pod

This IP address is routed/connected to the cluster network

All containers of that pod are sharing that network namespace

(and therefore using the same IP address)

492 / 695

With hostNetwork: true
No network namespace gets created

The pod is using the network namespace of the host

It "sees" (and can use) the interfaces (and IP addresses) of the host

The pod can receive outside traffic directly, on any port

Downside: with most network plugins, network policies won't work for that pod

most network policies work at the IP address level

filtering that pod = filtering traffic from the node

493 / 695

Running Traefik

The Traefik documentation tells us to pick between Deployment and Daemon Set

We are going to use a Daemon Set so that each node can accept connections

We will do two minor changes to the YAML provided by Traefik:

enable hostNetwork

add a toleration so that Traefik also runs on node1

494 / 695

https://docs.traefik.io/user-guide/kubernetes/#deploy-trfik-using-a-deployment-or-daemonset
https://github.com/containous/traefik/blob/master/examples/k8s/traefik-ds.yaml

Taints and tolerations

A taint is an attribute added to a node

It prevents pods from running on the node

... Unless they have a matching toleration

When deploying with kubeadm:

a taint is placed on the node dedicated the control plane

the pods running the control plane have a matching toleration

495 / 695

Checking taints on our nodes

Exercise

Check our nodes specs:

kubectl get node node1 -o json | jq .spec
kubectl get node node2 -o json | jq .spec

We should see a result only for node1 (the one with the control plane):

 "taints": [
 {
 "effect": "NoSchedule",
 "key": "node-role.kubernetes.io/master"
 }
]

496 / 695

Understanding a taint

The key can be interpreted as:

a reservation for a special set of pods
(here, this means "this node is reserved for the control plane")

an error condition on the node
(for instance: "disk full", do not start new pods here!)

The effect can be:

NoSchedule (don't run new pods here)

PreferNoSchedule (try not to run new pods here)

NoExecute (don't run new pods and evict running pods)

497 / 695

Checking tolerations on the control plane

Exercise

Check tolerations for CoreDNS:

kubectl -n kube-system get deployments coredns -o json |
 jq .spec.template.spec.tolerations

The result should include:

 {
 "effect": "NoSchedule",
 "key": "node-role.kubernetes.io/master"
 }

It means: "bypass the exact taint that we saw earlier on node1."

498 / 695

Special tolerations

Exercise

Check tolerations on kube-proxy:

kubectl -n kube-system get ds kube-proxy -o json |
 jq .spec.template.spec.tolerations

The result should include:

 {
 "operator": "Exists"
 }

This one is a special case that means "ignore all taints and run anyway."

499 / 695

Running Traefik on our cluster

We provide a YAML file (k8s/traefik.yaml) which is essentially the sum of:

Traefik's Daemon Set resources (patched with hostNetwork and tolerations)

Traefik's RBAC rules allowing it to watch necessary API objects

Exercise

Apply the YAML:

kubectl apply -f ~/container.training/k8s/traefik.yaml

500 / 695

https://github.com/containous/traefik/blob/master/examples/k8s/traefik-ds.yaml
https://github.com/containous/traefik/blob/master/examples/k8s/traefik-rbac.yaml

Checking that Traefik runs correctly

If Traefik started correctly, we now have a web server listening on each node

Exercise

Check that Traefik is serving 80/tcp:

curl localhost

We should get a 404 page not found error.

This is normal: we haven't provided any ingress rule yet.

501 / 695

Setting up DNS

To make our lives easier, we will use nip.io

Check out http://cheddar.A.B.C.D.nip.io

(replacing A.B.C.D with the IP address of node1)

We should get the same 404 page not found error

(meaning that our DNS is "set up properly", so to speak!)

502 / 695

http://nip.io/

Traefik web UI

Traefik provides a web dashboard

With the current install method, it's listening on port 8080

Exercise

Go to http://node1:8080 (replacing node1 with its IP address)

503 / 695

Setting up host-based routing ingress rules

We are going to use errm/cheese images

(there are 3 tags available: wensleydale, cheddar, stilton)

These images contain a simple static HTTP server sending a picture of cheese

We will run 3 deployments (one for each cheese)

We will create 3 services (one for each deployment)

Then we will create 3 ingress rules (one for each service)

We will route <name-of-cheese>.A.B.C.D.nip.io to the corresponding deployment

504 / 695

https://hub.docker.com/r/errm/cheese/tags/

Running cheesy web servers

Exercise

Run all three deployments:

kubectl run cheddar --image=errm/cheese:cheddar
kubectl run stilton --image=errm/cheese:stilton
kubectl run wensleydale --image=errm/cheese:wensleydale

Create a service for each of them:

kubectl expose deployment cheddar --port=80
kubectl expose deployment stilton --port=80
kubectl expose deployment wensleydale --port=80

505 / 695

What does an ingress resource look like?

Here is a minimal host-based ingress resource:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: cheddar
spec:
 rules:
 - host: cheddar.A.B.C.D.nip.io
 http:
 paths:
 - path: /
 backend:
 serviceName: cheddar
 servicePort: 80

(It is in k8s/ingress.yaml.)

506 / 695

Creating our first ingress resources

Exercise

Edit the file ~/container.training/k8s/ingress.yaml

Replace A.B.C.D with the IP address of node1

Apply the file

Open http://cheddar.A.B.C.D.nip.io

(An image of a piece of cheese should show up.)

507 / 695

http://cheddar.a.b.c.d.nip.io/

Creating the other ingress resources

Exercise

Edit the file ~/container.training/k8s/ingress.yaml

Replace cheddar with stilton (in name, host, serviceName)

Apply the file

Check that stilton.A.B.C.D.nip.io works correctly

Repeat for wensleydale

508 / 695

Using multiple ingress controllers

You can have multiple ingress controllers active simultaneously

(e.g. Traefik and NGINX)

You can even have multiple instances of the same controller

(e.g. one for internal, another for external traffic)

The kubernetes.io/ingress.class annotation can be used to tell which one to use

It's OK if multiple ingress controllers configure the same resource

(it just means that the service will be accessible through multiple paths)

509 / 695

Ingress: the good

The traffic flows directly from the ingress load balancer to the backends

it doesn't need to go through the ClusterIP

in fact, we don't even need a ClusterIP (we can use a headless service)

The load balancer can be outside of Kubernetes

(as long as it has access to the cluster subnet)

This allows to use external (hardware, physical machines...) load balancers

Annotations can encode special features

(rate-limiting, A/B testing, session stickiness, etc.)

510 / 695

Ingress: the bad

Aforementioned "special features" are not standardized yet

Some controllers will support them; some won't

Even relatively common features (stripping a path prefix) can differ:

traefik.ingress.kubernetes.io/rule-type: PathPrefixStrip

ingress.kubernetes.io/rewrite-target: /

This should eventually stabilize

(remember that ingresses are currently apiVersion: extensions/v1beta1)

511 / 695

https://docs.traefik.io/user-guide/kubernetes/#path-based-routing
https://github.com/kubernetes/contrib/tree/master/ingress/controllers/nginx/examples/rewrite

512 / 695

Collecting metrics with
Prometheus

Previous section | Back to table of contents | Next section

513 / 695

Collecting metrics with Prometheus
Prometheus is an open-source monitoring system including:

multiple service discovery backends to figure out which metrics to collect

a scraper to collect these metrics

an efficient time series database to store these metrics

a specific query language (PromQL) to query these time series

an alert manager to notify us according to metrics values or trends

We are going to deploy it on our Kubernetes cluster and see how to query it

514 / 695

Why Prometheus?

We don't endorse Prometheus more or less than any other system

It's relatively well integrated within the Cloud Native ecosystem

It can be self-hosted (this is useful for tutorials like this)

It can be used for deployments of varying complexity:

one binary and 10 lines of configuration to get started

all the way to thousands of nodes and millions of metrics

515 / 695

Exposing metrics to Prometheus

Prometheus obtains metrics and their values by querying exporters

An exporter serves metrics over HTTP, in plain text

This is what the node exporter looks like:

http://demo.robustperception.io:9100/metrics

Prometheus itself exposes its own internal metrics, too:

http://demo.robustperception.io:9090/metrics

If you want to expose custom metrics to Prometheus:

serve a text page like these, and you're good to go

libraries are available in various languages to help with quantiles etc.

516 / 695

http://demo.robustperception.io:9100/metrics
http://demo.robustperception.io:9090/metrics

How Prometheus gets these metrics

The Prometheus server will scrape URLs like these at regular intervals

(by default: every minute; can be more/less frequent)

If you're worried about parsing overhead: exporters can also use protobuf

The list of URLs to scrape (the scrape targets) is defined in configuration

517 / 695

Defining scrape targets

This is maybe the simplest configuration file for Prometheus:

scrape_configs:
 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

In this configuration, Prometheus collects its own internal metrics

A typical configuration file will have multiple scrape_configs

In this configuration, the list of targets is fixed

A typical configuration file will use dynamic service discovery

518 / 695

Service discovery

This configuration file will leverage existing DNS A records:

scrape_configs:
 - ...
 - job_name: 'node'
 dns_sd_configs:
 - names: ['api-backends.dc-paris-2.enix.io']
 type: 'A'
 port: 9100

In this configuration, Prometheus resolves the provided name(s)

(here, api-backends.dc-paris-2.enix.io)

Each resulting IP address is added as a target on port 9100

519 / 695

Dynamic service discovery

In the DNS example, the names are re-resolved at regular intervals

As DNS records are created/updated/removed, scrape targets change as well

Existing data (previously collected metrics) is not deleted

Other service discovery backends work in a similar fashion

520 / 695

Other service discovery mechanisms

Prometheus can connect to e.g. a cloud API to list instances

Or to the Kubernetes API to list nodes, pods, services ...

Or a service like Consul, Zookeeper, etcd, to list applications

The resulting configurations files are way more complex

(but don't worry, we won't need to write them ourselves)

521 / 695

Time series database

We could wonder, "why do we need a specialized database?"

One metrics data point = metrics ID + timestamp + value

With a classic SQL or noSQL data store, that's at least 160 bits of data + indexes

Prometheus is way more efficient, without sacrificing performance

(it will even be gentler on the I/O subsystem since it needs to write less)

Storage in Prometheus 2.0 by Goutham V at DC17EU

522 / 695

https://www.youtube.com/watch?v=C4YV-9CrawA
https://twitter.com/putadent

Running Prometheus on our cluster

We need to:

Run the Prometheus server in a pod

(using e.g. a Deployment to ensure that it keeps running)

Expose the Prometheus server web UI (e.g. with a NodePort)

Run the node exporter on each node (with a Daemon Set)

Setup a Service Account so that Prometheus can query the Kubernetes API

Configure the Prometheus server

(storing the configuration in a Config Map for easy updates)

523 / 695

Helm Charts to the rescue

To make our lives easier, we are going to use a Helm Chart

The Helm Chart will take care of all the steps explained above

(including some extra features that we don't need, but won't hurt)

524 / 695

Step 1: install Helm

If we already installed Helm earlier, these commands won't break anything

Install Tiller (Helm's server-side component) on our cluster:

helm init

Give Tiller permission to deploy things on our cluster:

kubectl create clusterrolebinding add-on-cluster-admin \
 --clusterrole=cluster-admin --serviceaccount=kube-system:default

525 / 695

Step 2: install Prometheus

Skip this if we already installed Prometheus earlier

(in doubt, check with helm list)

Install Prometheus on our cluster:

helm install stable/prometheus \
 --set server.service.type=NodePort \
 --set server.persistentVolume.enabled=false

The provided flags:

expose the server web UI (and API) on a NodePort

use an ephemeral volume for metrics storage
(instead of requesting a Persistent Volume through a Persistent Volume Claim)

526 / 695

Connecting to the Prometheus web UI

Let's connect to the web UI and see what we can do

Exercise

Figure out the NodePort that was allocated to the Prometheus server:

kubectl get svc | grep prometheus-server

With your browser, connect to that port

527 / 695

Querying some metrics

This is easy ... if you are familiar with PromQL

Exercise

Click on "Graph", and in "expression", paste the following:

sum by (instance) (
 irate(
 container_cpu_usage_seconds_total{
 pod_name=~"worker.*"
 }[5m]
)
)

Click on the blue "Execute" button and on the "Graph" tab just below

We see the cumulated CPU usage of worker pods for each node
(if we just deployed Prometheus, there won't be much data to see, though)

528 / 695

Getting started with PromQL

We can't learn PromQL in just 5 minutes

But we can cover the basics to get an idea of what is possible

(and have some keywords and pointers)

We are going to break down the query above

(building it one step at a time)

529 / 695

Graphing one metric across all tags

This query will show us CPU usage across all containers:

container_cpu_usage_seconds_total

The suffix of the metrics name tells us:

the unit (seconds of CPU)

that it's the total used since the container creation

Since it's a "total", it is an increasing quantity

(we need to compute the derivative if we want e.g. CPU % over time)

We see that the metrics retrieved have tags attached to them

530 / 695

Selecting metrics with tags

This query will show us only metrics for worker containers:

container_cpu_usage_seconds_total{pod_name=~"worker.*"}

The =~ operator allows regex matching

We select all the pods with a name starting with worker

(it would be better to use labels to select pods; more on that later)

The result is a smaller set of containers

531 / 695

Transforming counters in rates

This query will show us CPU usage % instead of total seconds used:

100*irate(container_cpu_usage_seconds_total{pod_name=~"worker.*"}[5m])

The irate operator computes the "per-second instant rate of increase"

rate is similar but allows decreasing counters and negative values

with irate, if a counter goes back to zero, we don't get a negative spike

The [5m] tells how far to look back if there is a gap in the data

And we multiply with 100* to get CPU % usage

532 / 695

https://prometheus.io/docs/prometheus/latest/querying/functions/#irate

Aggregation operators

This query sums the CPU usage per node:

sum by (instance) (
 irate(container_cpu_usage_seconds_total{pod_name=~"worker.*"}[5m])
)

instance corresponds to the node on which the container is running

sum by (instance) (...) computes the sum for each instance

Note: all the other tags are collapsed

(in other words, the resulting graph only shows the instance tag)

PromQL supports many more aggregation operators

533 / 695

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

What kind of metrics can we collect?

Node metrics (related to physical or virtual machines)

Container metrics (resource usage per container)

Databases, message queues, load balancers, ...

(check out this list of exporters!)

Instrumentation (=deluxe printf for our code)

Business metrics (customers served, revenue, ...)

534 / 695

https://prometheus.io/docs/instrumenting/exporters/

Node metrics

CPU, RAM, disk usage on the whole node

Total number of processes running, and their states

Number of open files, sockets, and their states

I/O activity (disk, network), per operation or volume

Physical/hardware (when applicable): temperature, fan speed ...

... and much more!

535 / 695

Container metrics

Similar to node metrics, but not totally identical

RAM breakdown will be different

active vs inactive memory
some memory is shared between containers, and accounted specially

I/O activity is also harder to track

async writes can cause deferred "charges"
some page-ins are also shared between containers

For details about container metrics, see:
http://jpetazzo.github.io/2013/10/08/docker-containers-metrics/

536 / 695

http://jpetazzo.github.io/2013/10/08/docker-containers-metrics/

Application metrics

Arbitrary metrics related to your application and business

System performance: request latency, error rate ...

Volume information: number of rows in database, message queue size ...

Business data: inventory, items sold, revenue ...

537 / 695

Detecting scrape targets

Prometheus can leverage Kubernetes service discovery

(with proper configuration)

Services or pods can be annotated with:

prometheus.io/scrape: true to enable scraping
prometheus.io/port: 9090 to indicate the port number
prometheus.io/path: /metrics to indicate the URI (/metrics by default)

Prometheus will detect and scrape these (without needing a restart or reload)

538 / 695

Querying labels

What if we want to get metrics for containers belong to pod tagged worker?

The cAdvisor exporter does not give us Kubernetes labels

Kubernetes labels are exposed through another exporter

We can see Kubernetes labels through metrics kube_pod_labels

(each container appears as a time series with constant value of 1)

Prometheus kind of supports "joins" between time series

But only if the names of the tags match exactly

539 / 695

Unfortunately ...

The cAdvisor exporter uses tag pod_name for the name of a pod

The Kubernetes service endpoints exporter uses tag pod instead

And this is why we can't have nice things

See Prometheus issue #2204 for the rationale

(this comment in particular if you want a workaround involving relabeling)

Then see this blog post or this other one to see how to perform "joins"

There is a good chance that the situation will improve in the future

540 / 695

https://github.com/prometheus/prometheus/issues/2204
https://github.com/prometheus/prometheus/issues/2204#issuecomment-261515520
https://www.robustperception.io/exposing-the-software-version-to-prometheus
https://www.weave.works/blog/aggregating-pod-resource-cpu-memory-usage-arbitrary-labels-prometheus/

541 / 695

Volumes

Previous section | Back to table of contents | Next section

542 / 695

Volumes
Volumes are special directories that are mounted in containers

Volumes can have many different purposes:

share files and directories between containers running on the same machine

share files and directories between containers and their host

centralize configuration information in Kubernetes and expose it to containers

manage credentials and secrets and expose them securely to containers

store persistent data for stateful services

access storage systems (like Ceph, EBS, NFS, Portworx, and many others)

543 / 695

Kubernetes volumes vs. Docker volumes

Kubernetes and Docker volumes are very similar

(the Kubernetes documentation says otherwise ...
but it refers to Docker 1.7, which was released in 2015!)

Docker volumes allow to share data between containers running on the same host

Kubernetes volumes allow us to share data between containers in the same pod

Both Docker and Kubernetes volumes allow us access to storage systems

Kubernetes volumes are also used to expose configuration and secrets

Docker has specific concepts for configuration and secrets

(but under the hood, the technical implementation is similar)

If you're not familiar with Docker volumes, you can safely ignore this slide!

544 / 695

https://kubernetes.io/docs/concepts/storage/volumes/

A simple volume example

apiVersion: v1
kind: Pod
metadata:
 name: nginx-with-volume
spec:
 volumes:
 - name: www
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html/

545 / 695

A simple volume example, explained

We define a standalone Pod named nginx-with-volume

In that pod, there is a volume named www

No type is specified, so it will default to emptyDir

(as the name implies, it will be initialized as an empty directory at pod creation)

In that pod, there is also a container named nginx

That container mounts the volume www to path /usr/share/nginx/html/

546 / 695

A volume shared between two containers

apiVersion: v1
kind: Pod
metadata:
 name: nginx-with-volume
spec:
 volumes:
 - name: www
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html/
 - name: git
 image: alpine
 command: ["sh", "-c", "apk add --no-cache git && git clone https://github.com/octocat/Spoon-Knife /www"]
 volumeMounts:
 - name: www
 mountPath: /www/
 restartPolicy: OnFailure

547 / 695

Sharing a volume, explained

We added another container to the pod

That container mounts the www volume on a different path (/www)

It uses the alpine image

When started, it installs git and clones the octocat/Spoon-Knife repository

(that repository contains a tiny HTML website)

As a result, NGINX now serves this website

548 / 695

Sharing a volume, in action

Let's try it!

Exercise

Create the pod by applying the YAML file:

kubectl apply -f ~/container.training/k8s/nginx-with-volume.yaml

Check the IP address that was allocated to our pod:

kubectl get pod nginx-with-volume -o wide
IP=$(kubectl get pod nginx-with-volume -o json | jq -r .status.podIP)

Access the web server:

curl $IP

549 / 695

The devil is in the details

The default restartPolicy is Always

This would cause our git container to run again ... and again ... and again

(with an exponential back-off delay, as explained in the documentation)

That's why we specified restartPolicy: OnFailure

There is a short period of time during which the website is not available

(because the git container hasn't done its job yet)

This could be avoided by using Init Containers

(we will see a live example in a few sections)

550 / 695

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Volume lifecycle

The lifecycle of a volume is linked to the pod's lifecycle

This means that a volume is created when the pod is created

This is mostly relevant for emptyDir volumes

(other volumes, like remote storage, are not "created" but rather "attached")

A volume survives across container restarts

A volume is destroyed (or, for remote storage, detached) when the pod is destroyed

551 / 695

552 / 695

Building images with the
Docker Engine

Previous section | Back to table of contents | Next section

553 / 695

Building images with the Docker Engine
Until now, we have built our images manually, directly on a node

We are going to show how to build images from within the cluster

(by executing code in a container controlled by Kubernetes)

We are going to use the Docker Engine for that purpose

To access the Docker Engine, we will mount the Docker socket in our container

After building the image, we will push it to our self-hosted registry

554 / 695

Resource specification for our builder pod

apiVersion: v1
kind: Pod
metadata:
 name: build-image
spec:
 restartPolicy: OnFailure
 containers:
 - name: docker-build
 image: docker
 env:
 - name: REGISTRY_PORT
 value: "3XXXX"
 command: ["sh", "-c"]
 args:
 - |
 apk add --no-cache git &&
 mkdir /workspace &&
 git clone https://github.com/jpetazzo/container.training /workspace &&
 docker build -t localhost:$REGISTRY_PORT/worker /workspace/dockercoins/worker &&
 docker push localhost:$REGISTRY_PORT/worker
 volumeMounts:
 - name: docker-socket
 mountPath: /var/run/docker.sock
 volumes:
 - name: docker-socket
 hostPath:
 path: /var/run/docker.sock

555 / 695

Breaking down the pod specification (1/2)

restartPolicy: OnFailure prevents the build from running in an infinite lopo

We use the docker image (so that the docker CLI is available)

We rely on the fact that the docker image is based on alpine

(which is why we use apk to install git)

The port for the registry is passed through an environment variable

(this avoids repeating it in the specification, which would be error-prone)

The environment variable has to be a string, so the "s are mandatory!

556 / 695

Breaking down the pod specification (2/2)

The volume docker-socket is declared with a hostPath, indicating a bind-mount

It is then mounted in the container onto the default Docker socket path

We show a interesting way to specify the commands to run in the container:

the command executed will be sh -c <args>

args is a list of strings

| is used to pass a multi-line string in the YAML file

557 / 695

Running our pod

Let's try this out!

Exercise

Check the port used by our self-hosted registry:

kubectl get svc registry

Edit ~/container.training/k8s/docker-build.yaml to put the port number

Schedule the pod by applying the resource file:

kubectl apply -f ~/container.training/k8s/docker-build.yaml

Watch the logs:

stern build-image

558 / 695

What's missing?

What do we need to change to make this production-ready?

Build from a long-running container (e.g. a Deployment) triggered by web hooks

(the payload of the web hook could indicate the repository to build)

Build a specific branch or tag; tag image accordingly

Handle repositories where the Dockerfile is not at the root

(or containing multiple Dockerfiles)

Expose build logs so that troubleshooting is straightforward

559 / 695

What's missing?

What do we need to change to make this production-ready?

Build from a long-running container (e.g. a Deployment) triggered by web hooks

(the payload of the web hook could indicate the repository to build)

Build a specific branch or tag; tag image accordingly

Handle repositories where the Dockerfile is not at the root

(or containing multiple Dockerfiles)

Expose build logs so that troubleshooting is straightforward

Ѵ That seems like a lot of work!

560 / 695

What's missing?

What do we need to change to make this production-ready?

Build from a long-running container (e.g. a Deployment) triggered by web hooks

(the payload of the web hook could indicate the repository to build)

Build a specific branch or tag; tag image accordingly

Handle repositories where the Dockerfile is not at the root

(or containing multiple Dockerfiles)

Expose build logs so that troubleshooting is straightforward

Ѵ That seems like a lot of work!

That's why services like Docker Hub (with automated builds) are helpful.
They handle the whole "code repository → Docker image" workflow.

561 / 695

https://docs.docker.com/docker-hub/builds/

Things to be aware of

This is talking directly to a node's Docker Engine to build images

It bypasses resource allocation mechanisms used by Kubernetes

(but you can use taints and tolerations to dedicate builder nodes)

Be careful not to introduce conflicts when naming images

(e.g. do not allow the user to specify the image names!)

Your builds are going to be fast

(because they will leverage Docker's caching system)

562 / 695

563 / 695

Building images with Kaniko

Previous section | Back to table of contents | Next section

564 / 695

Building images with Kaniko
Kaniko is an open source tool to build container images within Kubernetes

It can build an image using any standard Dockerfile

The resulting image can be pushed to a registry or exported as a tarball

It doesn't require any particular privilege

(and can therefore run in a regular container in a regular pod)

This combination of features is pretty unique

(most other tools use different formats, or require elevated privileges)

565 / 695

https://github.com/GoogleContainerTools/kaniko

Kaniko in practice

Kaniko provides an "executor image", gcr.io/kaniko-project/executor

When running that image, we need to specify at least:

the path to the build context (=the directory with our Dockerfile)

the target image name (including the registry address)

Simplified example:

docker run \
 -v ...:/workspace gcr.io/kaniko-project/executor \
 --context=/workspace \
 --destination=registry:5000/image_name:image_tag

566 / 695

Running Kaniko in a Docker container

Let's build the image for the DockerCoins worker service with Kaniko

Exercise

Find the port number for our self-hosted registry:

kubectl get svc registry
PORT=$(kubectl get svc registry -o json | jq .spec.ports[0].nodePort)

Run Kaniko:

docker run --net host \
 -v ~/container.training/dockercoins/worker:/workspace \
 gcr.io/kaniko-project/executor \
 --context=/workspace \
 --destination=127.0.0.1:$PORT/worker-kaniko:latest

We use --net host so that we can connect to the registry over 127.0.0.1.

567 / 695

Running Kaniko in a Kubernetes pod

We need to mount or copy the build context to the pod

We are going to build straight from the git repository

(to avoid depending on files sitting on a node, outside of containers)

We need to git clone the repository before running Kaniko

We are going to use two containers sharing a volume:

a first container to git clone the repository to the volume

a second container to run Kaniko, using the content of the volume

However, we need the first container to be done before running the second one

Ѵ How could we do that?

568 / 695

Init Containers to the rescue

A pod can have a list of initContainers

initContainers are executed in the specified order

Each Init Container needs to complete (exit) successfully

If any Init Container fails (non-zero exit status) the pod fails

(what happens next depends on the pod's restartPolicy)

After all Init Containers have run successfully, normal containers are started

We are going to execute the git clone operation in an Init Container

569 / 695

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Our Kaniko builder pod

apiVersion: v1
kind: Pod
metadata:
 name: kaniko-build
spec:
 initContainers:
 - name: git-clone
 image: alpine
 command: ["sh", "-c"]
 args:
 - |
 apk add --no-cache git &&
 git clone git://github.com/jpetazzo/container.training /workspace
 volumeMounts:
 - name: workspace
 mountPath: /workspace
 containers:
 - name: build-image
 image: gcr.io/kaniko-project/executor:latest
 args:
 - "--context=/workspace/dockercoins/rng"
 - "--insecure"
 - "--destination=registry:5000/rng-kaniko:latest"
 volumeMounts:
 - name: workspace
 mountPath: /workspace
 volumes:
 - name: workspace

570 / 695

Explanations

We define a volume named workspace (using the default emptyDir provider)

That volume is mounted to /workspace in both our containers

The git-clone Init Container installs git and runs git clone

The build-image container executes Kaniko

We use our self-hosted registry DNS name (registry)

We add --insecure to use plain HTTP to talk to the registry

571 / 695

Running our Kaniko builder pod

The YAML for the pod is in k8s/kaniko-build.yaml

Exercise

Create the pod:

kubectl apply -f ~/container.training/k8s/kaniko-build.yaml

Watch the logs:

stern kaniko

572 / 695

Discussion

What should we use? The Docker build technique shown earlier? Kaniko? Something else?

The Docker build technique is simple, and has the potential to be very fast

However, it doesn't play nice with Kubernetes resource limits

Kaniko plays nice with resource limits

However, it's slower (there is no caching at all)

The ultimate building tool will probably be Jessica Frazelle's img builder

(it depends on upstream changes that are not in Kubernetes 1.11.2 yet)

But ... is it all about speed? (No!)

573 / 695

https://twitter.com/jessfraz
https://github.com/genuinetools/img
https://github.com/AkihiroSuda/buildbench/issues/1

The big picture

For starters: the Docker Hub automated builds are very easy to set up

link a GitHub repository with the Docker Hub

each time you push to GitHub, an image gets build on the Docker Hub

If this doesn't work for you: why?

too slow (I'm far from us-east-1!) → consider using your cloud provider's registry

I'm not using a cloud provider → ok, perhaps you need to self-host then

I need fancy features (e.g. CI) → consider something like GitLab

574 / 695

https://docs.docker.com/docker-hub/builds/

575 / 695

Managing configuration

Previous section | Back to table of contents | Next section

576 / 695

Managing configuration
Some applications need to be configured (obviously!)

There are many ways for our code to pick up configuration:

command-line arguments

environment variables

configuration files

configuration servers (getting configuration from a database, an API...)

... and more (because programmers can be very creative!)

How can we do these things with containers and Kubernetes?

577 / 695

Passing configuration to containers

There are many ways to pass configuration to code running in a container:

baking it in a custom image

command-line arguments

environment variables

injecting configuration files

exposing it over the Kubernetes API

configuration servers

Let's review these different strategies!

578 / 695

Baking custom images

Put the configuration in the image

(it can be in a configuration file, but also ENV or CMD actions)

It's easy! It's simple!

Unfortunately, it also has downsides:

multiplication of images

different images for dev, staging, prod ...

minor reconfigurations require a whole build/push/pull cycle

Avoid doing it unless you don't have the time to figure out other options

579 / 695

Command-line arguments

Pass options to args array in the container specification

Example (source):

 args:
 - "--data-dir=/var/lib/etcd"
 - "--advertise-client-urls=http://127.0.0.1:2379"
 - "--listen-client-urls=http://127.0.0.1:2379"
 - "--listen-peer-urls=http://127.0.0.1:2380"
 - "--name=etcd"

The options can be passed directly to the program that we run ...

... or to a wrapper script that will use them to e.g. generate a config file

580 / 695

https://github.com/coreos/pods/blob/master/kubernetes.yaml#L29

Command-line arguments, pros & cons

Works great when options are passed directly to the running program

(otherwise, a wrapper script can work around the issue)

Works great when there aren't too many parameters

(to avoid a 20-lines args array)

Requires documentation and/or understanding of the underlying program

("which parameters and flags do I need, again?")

Well-suited for mandatory parameters (without default values)

Not ideal when we need to pass a real configuration file anyway

581 / 695

Environment variables

Pass options through the env map in the container specification

Example:

 env:
 - name: ADMIN_PORT
 value: "8080"
 - name: ADMIN_AUTH
 value: Basic
 - name: ADMIN_CRED
 value: "admin:0pensesame!"

value must be a string! Make sure that numbers and fancy strings are quoted.

Ѵ Why this weird {name: xxx, value: yyy} scheme? It will be revealed soon!

582 / 695

The downward API

In the previous example, environment variables have fixed values

We can also use a mechanism called the downward API

The downward API allows to expose pod or container information

either through special files (we won't show that for now)

or through environment variables

The value of these environment variables is computed when the container is started

Remember: environment variables won't (can't) change after container start

Let's see a few concrete examples!

583 / 695

Exposing the pod's namespace

 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

Useful to generate FQDN of services

(in some contexts, a short name is not enough)

For instance, the two commands should be equivalent:

curl api-backend
curl api-backend.$MY_POD_NAMESPACE.svc.cluster.local

584 / 695

Exposing the pod's IP address

 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

Useful if we need to know our IP address

(we could also read it from eth0, but this is more solid)

585 / 695

Exposing the container's resource limits

 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test-container
 resource: limits.memory

Useful for runtimes where memory is garbage collected

Example: the JVM

(the memory available to the JVM should be set with the -Xmx flag)

Best practice: set a memory limit, and pass it to the runtime

(see this blog post for a detailed example)

586 / 695

https://very-serio.us/2017/12/05/running-jvms-in-kubernetes/

More about the downward API

This documentation page tells more about these environment variables

And this one explains the other way to use the downward API

(through files that get created in the container filesystem)

587 / 695

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

Environment variables, pros and cons

Works great when the running program expects these variables

Works great for optional parameters with reasonable defaults

(since the container image can provide these defaults)

Sort of auto-documented

(we can see which environment variables are defined in the image, and their values)

Can be (ab)used with longer values ...

... You can put an entire Tomcat configuration file in an environment ...

... But should you?

(Do it if you really need to, we're not judging! But we'll see better ways.)

588 / 695

Injecting configuration files

Sometimes, there is no way around it: we need to inject a full config file

Kubernetes provides a mechanism for that purpose: configmaps

A configmap is a Kubernetes resource that exists in a namespace

Conceptually, it's a key/value map

(values are arbitrary strings)

We can think about them in (at least) two different ways:

as holding entire configuration file(s)

as holding individual configuration parameters

Note: to hold sensitive information, we can use "Secrets", which are another type of resource
behaving very much like configmaps. We'll cover them just after!

589 / 695

Configmaps storing entire files

In this case, each key/value pair corresponds to a configuration file

Key = name of the file

Value = content of the file

There can be one key/value pair, or as many as necessary

(for complex apps with multiple configuration files)

Examples:

Create a configmap with a single key, "app.conf"
kubectl create configmap my-app-config --from-file=app.conf
Create a configmap with a single key, "app.conf" but another file
kubectl create configmap my-app-config --from-file=app.conf=app-prod.conf
Create a configmap with multiple keys (one per file in the config.d directory)
kubectl create configmap my-app-config --from-file=config.d/

590 / 695

Configmaps storing individual parameters

In this case, each key/value pair corresponds to a parameter

Key = name of the parameter

Value = value of the parameter

Examples:

Create a configmap with two keys
kubectl create cm my-app-config \
 --from-literal=foreground=red \
 --from-literal=background=blue

Create a configmap from a file containing key=val pairs
kubectl create cm my-app-config \
 --from-env-file=app.conf

591 / 695

Exposing configmaps to containers

Configmaps can be exposed as plain files in the filesystem of a container

this is achieved by declaring a volume and mounting it in the container

this is particularly effective for configmaps containing whole files

Configmaps can be exposed as environment variables in the container

this is achieved with the downward API

this is particularly effective for configmaps containing individual parameters

Let's see how to do both!

592 / 695

Passing a configuration file with a configmap

We will start a load balancer powered by HAProxy

We will use the official haproxy image

It expects to find its configuration in /usr/local/etc/haproxy/haproxy.cfg

We will provide a simple HAproxy configuration, k8s/haproxy.cfg

It listens on port 80, and load balances connections between IBM and Google

593 / 695

https://hub.docker.com/_/haproxy/

Creating the configmap

Exercise

Go to the k8s directory in the repository:

cd ~/container.training/k8s

Create a configmap named haproxy and holding the configuration file:

kubectl create configmap haproxy --from-file=haproxy.cfg

Check what our configmap looks like:

kubectl get configmap haproxy -o yaml

594 / 695

Using the configmap

We are going to use the following pod definition:

apiVersion: v1
kind: Pod
metadata:
 name: haproxy
spec:
 volumes:
 - name: config
 configMap:
 name: haproxy
 containers:
 - name: haproxy
 image: haproxy
 volumeMounts:
 - name: config
 mountPath: /usr/local/etc/haproxy/

595 / 695

Using the configmap

The resource definition from the previous slide is in k8s/haproxy.yaml

Exercise

Create the HAProxy pod:

kubectl apply -f ~/container.training/k8s/haproxy.yaml

Check the IP address allocated to the pod:

kubectl get pod haproxy -o wide
IP=$(kubectl get pod haproxy -o json | jq -r .status.podIP)

596 / 695

Testing our load balancer

The load balancer will send:

half of the connections to Google

the other half to IBM

Exercise

Access the load balancer a few times:

curl $IP
curl $IP
curl $IP

We should see connections served by Google, and others served by IBM.
(Each server sends us a redirect page. Look at the URL that they send us to!)

597 / 695

Exposing configmaps with the downward API

We are going to run a Docker registry on a custom port

By default, the registry listens on port 5000

This can be changed by setting environment variable REGISTRY_HTTP_ADDR

We are going to store the port number in a configmap

Then we will expose that configmap to a container environment variable

598 / 695

Creating the configmap

Exercise

Our configmap will have a single key, http.addr:

kubectl create configmap registry --from-literal=http.addr=0.0.0.0:80

Check our configmap:

kubectl get configmap registry -o yaml

599 / 695

Using the configmap

We are going to use the following pod definition:

apiVersion: v1
kind: Pod
metadata:
 name: registry
spec:
 containers:
 - name: registry
 image: registry
 env:
 - name: REGISTRY_HTTP_ADDR
 valueFrom:
 configMapKeyRef:
 name: registry
 key: http.addr

600 / 695

Using the configmap

The resource definition from the previous slide is in k8s/registry.yaml

Exercise

Create the registry pod:

kubectl apply -f ~/container.training/k8s/registry.yaml

Check the IP address allocated to the pod:

kubectl get pod registry -o wide
IP=$(kubectl get pod registry -o json | jq -r .status.podIP)

Confirm that the registry is available on port 80:

curl $IP/v2/_catalog

601 / 695

Passwords, tokens, sensitive information

For sensitive information, there is another special resource: Secrets

Secrets and Configmaps work almost the same way

(we'll expose the differences on the next slide)

The intent is different, though:

"You should use secrets for things which are actually secret like API keys, credentials, etc.,
and use config map for not-secret configuration data."

"In the future there will likely be some differentiators for secrets like rotation or support
for backing the secret API w/ HSMs, etc."

(Source: the author of both features)

602 / 695

https://stackoverflow.com/a/36925553/580281

Differences between configmaps and secrets

Secrets are base64-encoded when shown with kubectl get secrets -o yaml

keep in mind that this is just encoding, not encryption

it is very easy to automatically extract and decode secrets

Secrets can be encrypted at rest

With RBAC, we can authorize a user to access configmaps, but not secrets

(since they are two different kinds of resources)

603 / 695

https://medium.com/@mveritym/decoding-kubernetes-secrets-60deed7a96a3
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

604 / 695

Owners and dependents

Previous section | Back to table of contents | Next section

605 / 695

Owners and dependents
Some objects are created by other objects

(example: pods created by replica sets, themselves created by deployments)

When an owner object is deleted, its dependents are deleted

(this is the default behavior; it can be changed)

We can delete a dependent directly if we want

(but generally, the owner will recreate another right away)

An object can have multiple owners

606 / 695

Finding out the owners of an object

The owners are recorded in the field ownerReferences in the metadata block

Exercise

Let's start a replicated nginx deployment:

kubectl run yanginx --image=nginx --replicas=3

Once it's up, check the corresponding pods:

kubectl get pods -l run=yanginx -o yaml | head -n 25

These pods are owned by a ReplicaSet named yanginx-xxxxxxxxxx.

607 / 695

Listing objects with their owners

This is a good opportunity to try the custom-columns output!

Exercise

Show all pods with their owners:

kubectl get pod -o custom-columns=\
NAME:.metadata.name,\
OWNER-KIND:.metadata.ownerReferences[0].kind,\
OWNER-NAME:.metadata.ownerReferences[0].name

Note: the custom-columns option should be one long option (without spaces), so the lines
should not be indented (otherwise the indentation will insert spaces).

608 / 695

Deletion policy

When deleting an object through the API, three policies are available:

foreground (API call returns after all dependents are deleted)

background (API call returns immediately; dependents are scheduled for deletion)

orphan (the dependents are not deleted)

When deleting an object with kubectl, this is selected with --cascade:

--cascade=true deletes all dependent objects (default)

--cascade=false orphans dependent objects

609 / 695

What happens when an object is deleted

It is removed from the list of owners of its dependents

If, for one of these dependents, the list of owners becomes empty ...

if the policy is "orphan", the object stays

otherwise, the object is deleted

610 / 695

Orphaning pods

We are going to delete the Deployment and Replica Set that we created

... without deleting the corresponding pods!

Exercise

Delete the Deployment:

kubectl delete deployment -l run=yanginx --cascade=false

Delete the Replica Set:

kubectl delete replicaset -l run=yanginx --cascade=false

Check that the pods are still here:

kubectl get pods

611 / 695

When and why would we have orphans?

If we remove an owner and explicitly instruct the API to orphan dependents

(like on the previous slide)

If we change the labels on a dependent, so that it's not selected anymore

(e.g. change the run: yanginx in the pods of the previous example)

If a deployment tool that we're using does these things for us

If there is a serious problem within API machinery or other components

(i.e. "this should not happen")

612 / 695

Finding orphan objects

We're going to output all pods in JSON format

Then we will use jq to keep only the ones without an owner

And we will display their name

Exercise

List all pods that do not have an owner:

kubectl get pod -o json | jq -r "
 .items[]
 | select(.metadata.ownerReferences|not)
 | .metadata.name"

613 / 695

Deleting orphan pods

Now that we can list orphan pods, deleting them is easy

Exercise

Add | xargs kubectl delete pod to the previous command:

kubectl get pod -o json | jq -r "
 .items[]
 | select(.metadata.ownerReferences|not)
 | .metadata.name" | xargs kubectl delete pod

As always, the documentation has useful extra information and pointers.

614 / 695

https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/

615 / 695

Stateful sets

Previous section | Back to table of contents | Next section

616 / 695

Stateful sets
Stateful sets are a type of resource in the Kubernetes API

(like pods, deployments, services...)

They offer mechanisms to deploy scaled stateful applications

At a first glance, they look like deployments:

a stateful set defines a pod spec and a number of replicas R

it will make sure that R copies of the pod are running

that number can be changed while the stateful set is running

updating the pod spec will cause a rolling update to happen

But they also have some significant differences

617 / 695

Stateful sets unique features

Pods in a stateful set are numbered (from 0 to R-1) and ordered

They are started and updated in order (from 0 to R-1)

A pod is started (or updated) only when the previous one is ready

They are stopped in reverse order (from R-1 to 0)

Each pod know its identity (i.e. which number it is in the set)

Each pod can discover the IP address of the others easily

The pods can have persistent volumes attached to them

Ѵ Wait a minute ... Can't we already attach volumes to pods and deployments?

618 / 695

Volumes and Persistent Volumes

Volumes are used for many purposes:

sharing data between containers in a pod

exposing configuration information and secrets to containers

accessing storage systems

The last type of volumes is known as a "Persistent Volume"

619 / 695

https://kubernetes.io/docs/concepts/storage/volumes/

Persistent Volumes types

There are many types of Persistent Volumes available:

public cloud storage (GCEPersistentDisk, AWSElasticBlockStore, AzureDisk...)

private cloud storage (Cinder, VsphereVolume...)

traditional storage systems (NFS, iSCSI, FC...)

distributed storage (Ceph, Glusterfs, Portworx...)

Using a persistent volume requires:

creating the volume out-of-band (outside of the Kubernetes API)

referencing the volume in the pod description, with all its parameters

620 / 695

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

Using a Persistent Volume

Here is a pod definition using an AWS EBS volume (that has to be created first):

apiVersion: v1
kind: Pod
metadata:
 name: pod-using-my-ebs-volume
spec:
 containers:
 - image: ...
 name: container-using-my-ebs-volume
 volumeMounts:
 - mountPath: /my-ebs
 name: my-ebs-volume
 volumes:
 - name: my-ebs-volume
 awsElasticBlockStore:
 volumeID: vol-049df61146c4d7901
 fsType: ext4

621 / 695

Shortcomings of Persistent Volumes

Their lifecycle (creation, deletion...) is managed outside of the Kubernetes API

(we can't just use kubectl apply/create/delete/... to manage them)

If a Deployment uses a volume, all replicas end up using the same volume

That volume must then support concurrent access

some volumes do (e.g. NFS servers support multiple read/write access)

some volumes support concurrent reads

some volumes support concurrent access for colocated pods

What we really need is a way for each replica to have its own volume

622 / 695

Persistent Volume Claims

To abstract the different types of storage, a pod can use a special volume type

This type is a Persistent Volume Claim

Using a Persistent Volume Claim is a two-step process:

creating the claim

using the claim in a pod (as if it were any other kind of volume)

Between these two steps, something will happen behind the scenes:

Kubernetes will associate an existing volume with the claim

... or dynamically create a volume if possible and necessary

623 / 695

What's in a Persistent Volume Claim?

At the very least, the claim should indicate:

the size of the volume (e.g. "5 GiB")

the access mode (e.g. "read-write by a single pod")

It can also give extra details, like:

which storage system to use (e.g. Portworx, EBS...)

extra parameters for that storage system

e.g.: "replicate the data 3 times, and use SSD media"

The extra details are provided by specifying a Storage Class

624 / 695

What's a Storage Class?

A Storage Class is yet another Kubernetes API resource

(visible with e.g. kubectl get storageclass or kubectl get sc)

It indicates which provisioner to use

And arbitrary parameters for that provisioner

(replication levels, type of disk ... anything relevant!)

It is necessary to define a Storage Class to use dynamic provisioning

Conversely, it is not necessary to define one if you will create volumes manually

(we will see dynamic provisioning in action later)

625 / 695

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Defining a Persistent Volume Claim

Here is a minimal PVC:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

626 / 695

Using a Persistent Volume Claim

Here is the same definition as earlier, but using a PVC:

apiVersion: v1
kind: Pod
metadata:
 name: pod-using-a-claim
spec:
 containers:
 - image: ...
 name: container-using-a-claim
 volumeMounts:
 - mountPath: /my-ebs
 name: my-volume
 volumes:
 - name: my-volume
 persistentVolumeClaim:
 claimName: my-claim

627 / 695

Persistent Volume Claims and Stateful sets

The pods in a stateful set can define a volumeClaimTemplate

A volumeClaimTemplate will dynamically create one Persistent Volume Claim per pod

Each pod will therefore have its own volume

These volumes are numbered (like the pods)

When updating the stateful set (e.g. image upgrade), each pod keeps its volume

When pods get rescheduled (e.g. node failure), they keep their volume

(this requires a storage system that is not node-local)

These volumes are not automatically deleted

(when the stateful set is scaled down or deleted)

628 / 695

Stateful set recap

A Stateful sets manages a number of identical pods

(like a Deployment)

These pods are numbered, and started/upgraded/stopped in a specific order

These pods are aware of their number

(e.g., #0 can decide to be the primary, and #1 can be secondary)

These pods can find the IP addresses of the other pods in the set

(through a headless service)

These pods can each have their own persistent storage

(Deployments cannot do that)

629 / 695

Stateful sets in action

We are going to deploy a Consul cluster with 3 nodes

Consul is a highly-available key/value store

(like etcd or Zookeeper)

One easy way to bootstrap a cluster is to tell each node:

the addresses of other nodes

how many nodes are expected (to know when quorum is reached)

630 / 695

Bootstrapping a Consul cluster

After reading the Consul documentation carefully (and/or asking around), we figure out the
minimal command-line to run our Consul cluster.

consul agent -data=dir=/consul/data -client=0.0.0.0 -server -ui \
 -bootstrap-expect=3 \
 -retry-join=X.X.X.X \
 -retry-join=Y.Y.Y.Y

We need to replace X.X.X.X and Y.Y.Y.Y with the addresses of other nodes

We can specify DNS names, but then they have to be FQDN

It's OK for a pod to include itself in the list as well

We can therefore use the same command-line on all nodes (easier!)

631 / 695

Discovering the addresses of other pods

When a service is created for a stateful set, individual DNS entries are created

These entries are constructed like this:

<name-of-stateful-set>-<n>.<name-of-service>.<namespace>.svc.cluster.local

<n> is the number of the pod in the set (starting at zero)

If we deploy Consul in the default namespace, the names could be:

consul-0.consul.default.svc.cluster.local
consul-1.consul.default.svc.cluster.local
consul-2.consul.default.svc.cluster.local

632 / 695

Putting it all together

The file k8s/consul.yaml defines a service and a stateful set

It has a few extra touches:

the name of the namespace is injected through an environment variable

a podAntiAffinity prevents two pods from running on the same node

a preStop hook makes the pod leave the cluster when shutdown gracefully

This was inspired by this excellent tutorial by Kelsey Hightower. Some features from the
original tutorial (TLS authentication between nodes and encryption of gossip traffic) were
removed for simplicity.

633 / 695

https://github.com/kelseyhightower/consul-on-kubernetes

Running our Consul cluster

We'll use the provided YAML file

Exercise

Create the stateful set and associated service:

kubectl apply -f ~/container.training/k8s/consul.yaml

Check the logs as the pods come up one after another:

stern consul

Check the health of the cluster:

kubectl exec consul-0 consul members

634 / 695

Caveats

We haven't used a volumeClaimTemplate here

That's because we don't have a storage provider yet

(except if you're running this on your own and your cluster has one)

What happens if we lose a pod?

a new pod gets rescheduled (with an empty state)

the new pod tries to connect to the two others

it will be accepted (after 1-2 minutes of instability)

and it will retrieve the data from the other pods

635 / 695

Failure modes

What happens if we lose two pods?

manual repair will be required

we will need to instruct the remaining one to act solo

then rejoin new pods

What happens if we lose three pods? (aka all of them)

we lose all the data (ouch)

If we run Consul without persistent storage, backups are a good idea!

636 / 695

637 / 695

Highly available Persistent
Volumes

Previous section | Back to table of contents | Next section

638 / 695

Highly available Persistent Volumes
How can we achieve true durability?

How can we store data that would survive the loss of a node?

639 / 695

Highly available Persistent Volumes
How can we achieve true durability?

How can we store data that would survive the loss of a node?

We need to use Persistent Volumes backed by highly available storage systems

There are many ways to achieve that:

leveraging our cloud's storage APIs

using NAS/SAN systems or file servers

distributed storage systems

640 / 695

Highly available Persistent Volumes
How can we achieve true durability?

How can we store data that would survive the loss of a node?

We need to use Persistent Volumes backed by highly available storage systems

There are many ways to achieve that:

leveraging our cloud's storage APIs

using NAS/SAN systems or file servers

distributed storage systems

We are going to see one distributed storage system in action

641 / 695

Our test scenario

We will set up a distributed storage system on our cluster

We will use it to deploy a SQL database (PostgreSQL)

We will insert some test data in the database

We will disrupt the node running the database

We will see how it recovers

642 / 695

Portworx

Portworx is a commercial persistent storage solution for containers

It works with Kubernetes, but also Mesos, Swarm ...

It provides hyper-converged storage

(=storage is provided by regular compute nodes)

We're going to use it here because it can be deployed on any Kubernetes cluster

(it doesn't require any particular infrastructure)

We don't endorse or support Portworx in any particular way

(but we appreciate that it's super easy to install!)

643 / 695

https://en.wikipedia.org/wiki/Hyper-converged_infrastructure

A useful reminder

We're installing Portworx because we need a storage system

If you are using AKS, EKS, GKE ... you already have a storage system

(but you might want another one, e.g. to leverage local storage)

If you have setup Kubernetes yourself, there are other solutions available too

on premises, you can use a good old SAN/NAS

on a private cloud like OpenStack, you can use e.g. Cinder

everywhere, you can use other systems, e.g. Gluster, StorageOS

644 / 695

Portworx requirements

Kubernetes cluster Õ

Optional key/value store (etcd or Consul) Þ

At least one available block device Þ

645 / 695

The key-value store

In the current version of Portworx (1.4) it is recommended to use etcd or Consul

But Portworx also has beta support for an embedded key/value store

For simplicity, we are going to use the latter option

(but if we have deployed Consul or etcd, we can use that, too)

646 / 695

One available block device

Block device = disk or partition on a disk

We can see block devices with lsblk

(or cat /proc/partitions if we're old school like that!)

If we don't have a spare disk or partition, we can use a loop device

A loop device is a block device actually backed by a file

These are frequently used to mount ISO (CD/DVD) images or VM disk images

647 / 695

Setting up a loop device

We are going to create a 10 GB (empty) file on each node

Then make a loop device from it, to be used by Portworx

Exercise

Create a 10 GB file on each node:

for N in $(seq 1 4); do ssh node$N sudo truncate --size 10G /portworx.blk; done

(If SSH asks to confirm host keys, enter yes each time.)

Associate the file to a loop device on each node:

for N in $(seq 1 4); do ssh node$N sudo losetup /dev/loop4 /portworx.blk; done

648 / 695

Installing Portworx

To install Portworx, we need to go to https://install.portworx.com/

This website will ask us a bunch of questoins about our cluster

Then, it will generate a YAML file that we should apply to our cluster

649 / 695

https://install.portworx.com/

Installing Portworx

To install Portworx, we need to go to https://install.portworx.com/

This website will ask us a bunch of questoins about our cluster

Then, it will generate a YAML file that we should apply to our cluster

Or, we can just apply that YAML file directly (it's in k8s/portworx.yaml)

Exercise

Install Portworx:

kubectl apply -f ~/container.training/k8s/portworx.yaml

650 / 695

https://install.portworx.com/

Generating a custom YAML file

If you want to generate a YAML file tailored to your own needs, the easiest way is to use
https://install.portworx.com/.

FYI, this is how we obtained the YAML file used earlier:

KBVER=$(kubectl version -o json | jq -r .serverVersion.gitVersion)
BLKDEV=/dev/loop4
curl https://install.portworx.com/1.4/?kbver=$KBVER&b=true&s=$BLKDEV&c=px-workshop&stork=tru

If you want to use an external key/value store, add one of the following:

&k=etcd://XXX:2379
&k=consul://XXX:8500

... where XXX is the name or address of your etcd or Consul server.

651 / 695

https://install.portworx.com/

Waiting for Portworx to be ready

The installation process will take a few minutes

Exercise

Check out the logs:

stern -n kube-system portworx

Wait until it gets quiet

(you should see portworx service is healthy, too)

652 / 695

Dynamic provisioning of persistent volumes

We are going to run PostgreSQL in a Stateful set

The Stateful set will specify a volumeClaimTemplate

That volumeClaimTemplate will create Persistent Volume Claims

Kubernetes' dynamic provisioning will satisfy these Persistent Volume Claims

(by creating Persistent Volumes and binding them to the claims)

The Persistent Volumes are then available for the PostgreSQL pods

653 / 695

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Storage Classes

It's possible that multiple storage systems are available

Or, that a storage system offers multiple tiers of storage

(SSD vs. magnetic; mirrored or not; etc.)

We need to tell Kubernetes which system and tier to use

This is achieved by creating a Storage Class

A volumeClaimTemplate can indicate which Storage Class to use

It is also possible to mark a Storage Class as "default"

(it will be used if a volumeClaimTemplate doesn't specify one)

654 / 695

Our default Storage Class

This is our Storage Class (in k8s/storage-class.yaml):

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: portworx-replicated
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "2"
 priority_io: "high"

It says "use Portworx to create volumes"

It tells Portworx to "keep 2 replicas of these volumes"

It marks the Storage Class as being the default one

655 / 695

Creating our Storage Class

Let's apply that YAML file!

Exercise

Create the Storage Class:

kubectl apply -f ~/container.training/k8s/storage-class.yaml

Check that it is now available:

kubectl get sc

It should show as portworx-replicated (default).

656 / 695

Our Postgres Stateful set

The next slide shows k8s/postgres.yaml

It defines a Stateful set

With a volumeClaimTemplate requesting a 1 GB volume

That volume will be mounted to /var/lib/postgresql/data

There is another little detail: we enable the stork scheduler

The stork scheduler is optional (it's specific to Portworx)

It helps the Kubernetes scheduler to colocate the pod with its volume

(see this blog post for more details about that)

657 / 695

https://portworx.com/stork-storage-orchestration-kubernetes/

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: postgres
spec:
 selector:
 matchLabels:
 app: postgres
 serviceName: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 schedulerName: stork
 containers:
 - name: postgres
 image: postgres:10.5
 volumeMounts:
 - mountPath: /var/lib/postgresql/data
 name: postgres
 volumeClaimTemplates:
 - metadata:
 name: postgres
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

658 / 695

Creating the Stateful set

Before applying the YAML, watch what's going on with kubectl get events -w

Exercise

Apply that YAML:

kubectl apply -f ~/container.training/k8s/postgres.yaml

659 / 695

Testing our PostgreSQL pod

We will use kubectl exec to get a shell in the pod

Good to know: we need to use the postgres user in the pod

Exercise

Get a shell in the pod, as the postgres user:

kubectl exec -ti postgres-0 su postgres

Check that default databases have been created correctly:

psql -l

(This should show us 3 lines: postgres, template0, and template1.)

660 / 695

Inserting data in PostgreSQL

We will create a database and populate it with pgbench

Exercise

Create a database named demo:

createdb demo

Populate it with pgbench:

pgbench -i -s 10 demo

The -i flag means "create tables"

The -s 10 flag means "create 10 x 100,000 rows"

661 / 695

Checking how much data we have now

The pgbench tool inserts rows in table pgbench_accounts

Exercise

Check that the demo base exists:

psql -l

Check how many rows we have in pgbench_accounts:

psql demo -c "select count(*) from pgbench_accounts"

(We should see a count of 1,000,000 rows.)

662 / 695

Find out which node is hosting the database

We can find that information with kubectl get pods -o wide

Exercise

Check the node running the database:

kubectl get pod postgres-0 -o wide

We are going to disrupt that node.

663 / 695

Find out which node is hosting the database

We can find that information with kubectl get pods -o wide

Exercise

Check the node running the database:

kubectl get pod postgres-0 -o wide

We are going to disrupt that node.

By "disrupt" we mean: "disconnect it from the network".

664 / 695

Disconnect the node

We will use iptables to block all traffic exiting the node

(except SSH traffic, so we can repair the node later if needed)

Exercise

SSH to the node to disrupt:

Allow SSH traffic leaving the node, but block all other traffic:

sudo iptables -I OUTPUT -p tcp --sport 22 -j ACCEPT
sudo iptables -I OUTPUT 2 -j DROP

ssh nodeX

665 / 695

Check that the node is disconnected

Exercise

Check that the node can't communicate with other nodes:

ping node1

Logout to go back on node1

Watch the events unfolding with kubectl get events -w and kubectl get pods -w

It will take some time for Kubernetes to mark the node as unhealthy

Then it will attempt to reschedule the pod to another node

In about a minute, our pod should be up and running again

666 / 695

Check that our data is still available

We are going to reconnect to the (new) pod and check

Exercise

Get a shell on the pod:

kubectl exec -ti postgres-0 su postgres

Check the number of rows in the pgbench_accounts table:

psql demo -c "select count(*) from pgbench_accounts"

667 / 695

Double-check that the pod has really moved

Just to make sure the system is not bluffing!

Exercise

Look at which node the pod is now running on

kubectl get pod postgres-0 -o wide

668 / 695

Re-enable the node

Let's fix the node that we disconnected from the network

Exercise

SSH to the node:

Remove the iptables rule blocking traffic:

sudo iptables -D OUTPUT 2

ssh nodeX

669 / 695

A few words about this PostgreSQL setup

In a real deployment, you would want to set a password

This can be done by creating a secret:

kubectl create secret generic postgres \
 --from-literal=password=$(base64 /dev/urandom | head -c16)

And then passing that secret to the container:

env:
- name: POSTGRES_PASSWORD
valueFrom:
 secretKeyRef:
 name: postgres
 key: password

670 / 695

Troubleshooting Portworx

If we need to see what's going on with Portworx:

PXPOD=$(kubectl -n kube-system get pod -l name=portworx -o json |
 jq -r .items[0].metadata.name)
kubectl -n kube-system exec $PXPOD -- /opt/pwx/bin/pxctl status

We can also connect to Lighthouse (a web UI)

check the port with kubectl -n kube-system get svc px-lighthouse

connect to that port

the default login/password is admin/Password1

then specify portworx-service as the endpoint

671 / 695

Removing Portworx

Portworx provides a storage driver

It needs to place itself "above" the Kubelet

(it installs itself straight on the nodes)

To remove it, we need to do more than just deleting its Kubernetes resources

It is done by applying a special label:

kubectl label nodes --all px/enabled=remove --overwrite

Then removing a bunch of local files:

sudo chattr -i /etc/pwx/.private.json
sudo rm -rf /etc/pwx /opt/pwx

(on each node where Portworx was running)

672 / 695

Dynamic provisioning without a provider

What if we want to use Stateful sets without a storage provider?

We will have to create volumes manually

(by creating Persistent Volume objects)

These volumes will be automatically bound with matching Persistent Volume Claims

We can use local volumes (essentially bind mounts of host directories)

Of course, these volumes won't be available in case of node failure

Check this blog post for more information and gotchas

673 / 695

https://kubernetes.io/blog/2018/04/13/local-persistent-volumes-beta/

Acknowledgements

The Portworx installation tutorial, and the PostgreSQL example, were inspired by
Portworx examples on Katacoda, in particular:

installing Portworx on Kubernetes

(with adapatations to use a loop device and an embedded key/value store)

persistent volumes on Kubernetes using Portworx

(with adapatations to specify a default Storage Class)

HA PostgreSQL on Kubernetes with Portworx

(with adaptations to use a Stateful Set and simplify PostgreSQL's setup)

674 / 695

https://katacoda.com/portworx/scenarios/
https://www.katacoda.com/portworx/scenarios/deploy-px-k8s
https://www.katacoda.com/portworx/scenarios/px-k8s-vol-basic
https://www.katacoda.com/portworx/scenarios/px-k8s-postgres-all-in-one

675 / 695

Next steps

Previous section | Back to table of contents | Next section

676 / 695

Next steps
Alright, how do I get started and containerize my apps?

677 / 695

Next steps
Alright, how do I get started and containerize my apps?

Suggested containerization checklist:

write a Dockerfile for one service in one app
write Dockerfiles for the other (buildable) services
write a Compose file for that whole app
make sure that devs are empowered to run the app in containers
set up automated builds of container images from the code repo
set up a CI pipeline using these container images
set up a CD pipeline (for staging/QA) using these images

And then it is time to look at orchestration!

678 / 695

Options for our first production cluster

Get a managed cluster from a major cloud provider (AKS, EKS, GKE...)

(price: $, difficulty: medium)

Hire someone to deploy it for us

(price: $$, difficulty: easy)

Do it ourselves

(price: $-$$$, difficulty: hard)

679 / 695

One big cluster vs. multiple small ones

Yes, it is possible to have prod+dev in a single cluster

(and implement good isolation and security with RBAC, network policies...)

But it is not a good idea to do that for our first deployment

Start with a production cluster + at least a test cluster

Implement and check RBAC and isolation on the test cluster

(e.g. deploy multiple test versions side-by-side)

Make sure that all our devs have usable dev clusters

(whether it's a local minikube or a full-blown multi-node cluster)

680 / 695

Stateful services (databases etc.)

As a first step, it is wiser to keep stateful services outside of the cluster

Exposing them to pods can be done with multiple solutions:

ExternalName services
(redis.blue.svc.cluster.local will be a CNAME record)

ClusterIP services with explicit Endpoints
(instead of letting Kubernetes generate the endpoints from a selector)

Ambassador services
(application-level proxies that can provide credentials injection and more)

681 / 695

Managing stack deployments

The best deployment tool will vary, depending on:

the size and complexity of your stack(s)
how often you change it (i.e. add/remove components)
the size and skills of your team

A few examples:

shell scripts invoking kubectl
YAML resources descriptions committed to a repo
Helm (~package manager)
Spinnaker (Netflix' CD platform)
Brigade (event-driven scripting; no YAML)

682 / 695

https://github.com/kubernetes/helm
https://www.spinnaker.io/
https://brigade.sh/

Cluster federation
683 / 695

Cluster federation
684 / 695

Cluster federation

Sorry Star Trek fans, this is not the federation you're looking for!

685 / 695

Cluster federation

Sorry Star Trek fans, this is not the federation you're looking for!

(If I add "Your cluster is in another federation" I might get a 3rd fandom wincing!)

686 / 695

Cluster federation

Kubernetes master operation relies on etcd

etcd uses the Raft protocol

Raft recommends low latency between nodes

What if our cluster spreads to multiple regions?

687 / 695

https://raft.github.io/

Cluster federation

Kubernetes master operation relies on etcd

etcd uses the Raft protocol

Raft recommends low latency between nodes

What if our cluster spreads to multiple regions?

Break it down in local clusters

Regroup them in a cluster federation

Synchronize resources across clusters

Discover resources across clusters

688 / 695

https://raft.github.io/

Developer experience

We've put this last, but it's pretty important!

How do you on-board a new developer?

What do they need to install to get a dev stack?

How does a code change make it from dev to prod?

How does someone add a component to a stack?

689 / 695

690 / 695

Links and resources

Previous section | Back to table of contents | Next section

691 / 695

Links and resources
All things Kubernetes:

Kubernetes Community - Slack, Google Groups, meetups
Kubernetes on StackOverflow
Play With Kubernetes Hands-On Labs

All things Docker:

Docker documentation
Docker Hub
Docker on StackOverflow
Play With Docker Hands-On Labs

Everything else:

Local meetups

These slides (and future updates) are on → http://container.training/

692 / 695

https://kubernetes.io/community/
https://stackoverflow.com/questions/tagged/kubernetes
https://medium.com/@marcosnils/introducing-pwk-play-with-k8s-159fcfeb787b
http://docs.docker.com/
https://hub.docker.com/
https://stackoverflow.com/questions/tagged/docker
http://training.play-with-docker.com/
https://www.meetup.com/
http://container.training/

693 / 695

Final words

Previous section | Back to table of contents | Next section

694 / 695

Final words
For $$$ reasons, our clusters will be shut down now

if you want another cluster that you can keep longer, come talk to me

If you liked this tutorial:

rate it on the O'Reilly website

tweet about it, tagging @jpetazzo and #VelocityConf

hire me to deliver it for your team: jerome.petazzoni@gmail.com

If you didn't like this tutorial:

please tell me why, so I can do better next time!

695 / 695

https://conferences.oreilly.com/velocity/vl-ny/public/schedule/evaluate/69875

