

Kubernetes 101
Learn the basics of Kubernetes and
container-based infrastructure.

Jeff Geerling and Katherine Geerling

This book is for sale at http://leanpub.com/kubernetes-101

This version was published on 2021-07-29

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2021 Jeff Geerling and Katherine Geerling

http://leanpub.com/kubernetes-101
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Jeff Geerling and Katherine Geerling by
spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Kubernetes 101 by Jeff Geerling on LeanPub!
Check it out at https://leanpub.com/kubernetes-101
#Kube101

The suggested hashtag for this book is #kube101.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#kube101

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Kubernetes%20101%20by%20Jeff%20Geerling%20on%20LeanPub!%20Check%20it%20out%20at%20https://leanpub.com/kubernetes-101%20%23Kube101
https://twitter.com/intent/tweet?text=I%20just%20bought%20Kubernetes%20101%20by%20Jeff%20Geerling%20on%20LeanPub!%20Check%20it%20out%20at%20https://leanpub.com/kubernetes-101%20%23Kube101
https://twitter.com/intent/tweet?text=I%20just%20bought%20Kubernetes%20101%20by%20Jeff%20Geerling%20on%20LeanPub!%20Check%20it%20out%20at%20https://leanpub.com/kubernetes-101%20%23Kube101
https://twitter.com/search?q=%23kube101
https://twitter.com/search?q=%23kube101

Also By Jeff Geerling
Ansible for DevOps

Ansible for Kubernetes

http://leanpub.com/u/geerlingguy
http://leanpub.com/ansible-for-devops
http://leanpub.com/ansible-for-kubernetes

Contents

Preface . i
Who is this book for? ii
Typographic conventions ii
Please help improve this book! iv

Current Published Book Version Information . iv
About the Author . iv

Introduction . v
Examples Repository viii
Other resources . ix

Chapter 1 - Hello, Kubernetes! 1
Kubernetes Origins . 1
Is Kubernetes Right for You? 3
Kubernetes Environments 5
Instructions for Minikube 6
Building the example Docker image 8

Chapter 2 - Containers 10
Why does Kubernetes use containers? 10
Container History: Vendor Wars 11

Docker, containerd, and runC 12
rkt and CoreOS 14
Kubernetes Container Runtime 14

CONTENTS

CRI-O . 14
Modern Container Runtime options 15

How do you build a container? Docker vs Buildah 15
Instructions for ‘Hello Go’ app 16
Build the ‘Hello Go’ Docker container image 17
Push the container image to a private Docker registry 17

Chapter 3 - Deploying apps 19
Creating a Linode Cluster for cloud-based testing . 19
Deploying Hello Go into Kubernetes 21
Exposing the Hello Go App 24
Scaling the Hello Go App 26
Updating the Go App 28
Rolling back the Deployment 29

Chapter 4 - Real-world apps 30
Installing Drupal on a Traditional LAMP server . . 30

LAMP Server Setup for drupal 31
Automating the Installation 34
Installing Drupal on Kubernetes using Bitnami’s

Helm Chart . 35
Install Helm . 36
Install the Drupal Chart 36
Exposing a LoadBalancer in Minikube 37
Changing Chart Options 37
Cleaning Up . 38

Drupal Directly in Kubernetes - Let’s Do it [Mostly 38
Deploying the Drupal Kubernetes Manifests . 39

Chapter 5 - Scaling Drupal in k8s 43
Fixing the scalability issue with Drupal Pods 43

Shared Storage Options 44
Rook and Ceph 44
NFS . 45

CONTENTS

Set up an NFS server 46
Reconfigure the Drupal PersistentVolumeClaim

for NFS . 46
Set up NFS client provisioner in K8s 47
Deploy Drupal and MySQL (MariaDB) 48
Save a File and observe it 49

Scale Drupal up… and down! 49
Use Horizontal Pod Autoscaling (HPA) 51

Set up metrics-server 51
Configuring HPA for Drupal 52
Testing HPA for Drupal 53

Scaling Databases . 54

Chapter 6 - DNS, TLS, Cron, Logging 56
Setting things up from Episode 5 56
DNS and Ingress setup for Drupal 57

Set up an NGINX Ingress Controller 60
Set up Ingress for Drupal 61
External DNS Integration 61

Set up TLS with cert-manager and Let’s Encrypt . . 62
Keeping Drupal Happy with a CronJob 65
Monitoring Drupal’s Logs 68

Using an External SaaS Log Aggregator 68
Running your own ELK Stack 69
Relying on a Service Mesh 69
Using your cloud provider’s solution 70

Chapter 7 - Hello, Operator! 71
What are Operators? 71

The Concept . 72
The Execution . 73
Why not use an Operator? 75

Popular Kubernetes Operators 76

CONTENTS

Build your own Operator 76
Building an Operator with Operator SDK . . . 78
Any language, including Python or Rust! . . . 83

Conclusion . 83

Chapter 8 - Kube, Meet Pi 84
Heavy Metal Kubernetes 84
Start with Training Wheels 85

The Raspberry Pi makes for Compact Clusters 86
The Raspberry Pi sips energy, and keeps its cool 88
The Raspberry Pi teaches lessons about scala-

bility 89
ARM is not all sunshine and roses 91

Installing a Kubernetes Distribution 92
kubeadm . 93

Setting up the Raspberry Pi Dramble 94
Going Further . 95

Other Guides . 96

Chapter 9 - Secrets and Configuration 97

Chapter 10 - Monitoring Kubernetes 98
Two Clusters to Monitor 99

Cluster Visibility with Lens 99
Install Lens . 100
Inspect your clusters with Lens 100
Explore Pod Logs 101
Log into Nodes and Pods 101
Visit web services in a browser 103
Manage resources 103

Prometheus and Grafana 104
Install Prometheus and Grafana using Helm . 104
Access Grafana 105
Grafana Dashboards 108

CONTENTS

Maintaining Grafana 108
Conclusion . 108

Afterword . 110

Preface
In 2020, the entire global community experienced a shock in
the form of the COVID-19 pandemic.

Entire industries had to pivot overnight or risk ruin. Tech,
fortunately for those of us in the industry, was suddenly in
high demand.

Since I had a good deal of working knowledge about Ku-
bernetes, and since I also finished a popular video series on
Ansible earlier in the year, I decided to live-stream a series
‘Kubernetes 101’ to try to train people new to cloud-native
infrastructure on this popular clustering software.

After many thousands of developers have viewed the video
series, I decided to translate the content of the video series
into this introductory-level book, so even more people could
dive into Kubernetes and learn a new skill.

Whether you’re new to infrastructure, or you’re a veteran,
Kubernetes can be complex and daunting. This book follows
the progress of the video series, and starts with the basics,
teaching each new concept with concrete, real-world exam-
ples.

I hope you enjoy the book as much as I enjoyed writing it!

— Jeff Geerling, 2021

Preface ii

Who is this book for?

If you are familiar with Linux-based infrastructure, and the
basics of cloud computing (virtual machines, installing soft-
ware, and deploying applications), then this book is for you.

You do not need to have any knowledge about containers,
clustering, or networking; this book will teach you all the
basics as we progress through containers, basic clustering,
application deployment, and more.

Typographic conventions

Kubernetes uses a simple syntax (YAML) and simple com-
mand-line tools (using common POSIX conventions). Code
samples and commands will be highlighted throughout the
book either inline (for example: kubectl [command]), or in a
code block (with or without line numbers) like:

1 ---

2 # This is the beginning of a YAML file.

Some lines of YAML and other code examples require more
than 70 characters per line, resulting in the code wrapping to
a new line. Wrapping code is indicated by a \ at the end of
the line of code. For example:

Preface iii

1 # The line of code wraps due to the extremely long \

2 URL.

3 wget http://www.example.com/really/really/really/lo\

4 ng/path/in/the/url/causes/the/line/to/wrap

When using the code, don’t copy the \ character, and make
sure you don’t use a newline between the first line with the
trailing \ and the next line.

Links to pertinent resources and websites are added inline,
like the following link to Kubernetes, and they can be viewed
directly by clicking on them in eBook formats, or by following
the URL in the footnotes.

Sometimes, asides are added to highlight further information
about a specific topic:

Informational asides will provide extra informa-
tion.

Warning asides will warn about common pitfalls
and how to avoid them.

Tip asides will give tips for deepening your under-
standing or optimizing your use of Kubernetes.

When displaying commands run in a terminal session, if the
commands are run under your normal/non-root user account,
the commands will be prefixed by the dollar sign ($). If the
commands are run as the root user, they will be prefixed with
the pound sign (#).

https://kubernetes.io/

Preface iv

Please help improve this book!

New revisions of this book are published on a regular basis
(see current book publication stats below). If you think a par-
ticular section needs improvement or find something missing,
please post an issue in the Kubernetes 101 issue queue (on
GitHub).

All known issues with Kubernetes 101 will be aggregated on
the book’s online Errata page.

Current Published Book Version
Information

• Current book version: 0.3
• Current Kubernetes version as of last publication:
1.21

• Current Date as of last publication: June 12, 2021

About the Author

Jeff Geerling is a developer who has worked in programming
and reliability engineering, building hundreds of apps and
services in various cloud and on-premise environments. He
also manages many services offered byMidwesternMac, LLC
and has been using Kubernetes since 2017.

https://github.com/geerlingguy/kubernetes-101
https://kube101.jeffgeerling.com/book/errata

Introduction
To understand the need for Kubernetes, we need to take a time
machine back to the days where we would have have one or
two giant servers running all our applications.

This server was so important we named it!

The server you see in this photo is one that I helped manage
at a radio station in St. Louis. We had a name for the server—
we had names for all of our servers back then—because the
server was very, very important.

Once this server was set up, we kept it running forever, as long
as people still needed to access the applications that server
hosted.

Clearly, that system had problems:

Introduction vi

• If a power supply or hard drive failed, we would scram-
ble to get it replaced and maybe have to restore from a
slow tape backup.

• Critical changes had to be done with special care, and
during odd hours early in the morning (with sleep-
deprived engineers running the show) to try to avoid
interruptions to business workflows.

This infrastructure was tedious, but it was the best we could
do at the time.

As time went on, applications themselves focused more on
redundancy and availability, and server architecture was
modified for better stability and better separation of duties,
with multiple redundant servers taking the place of a single
server.

I have a good example of this type of architecture in the early
version ofmy ‘Raspberry Pi Dramble’ cluster highlighted later
in this book:

Introduction vii

Original Raspberry Pi cluster architecture

Many web applications have a similar server architecture:

• A proxy or load-balancing server at the front.
• Backend web servers handling the application logic.
• Storage servers for files.
• Database servers for relational data storage.

Complexity increased with this type of clustering. Virtualized
‘cloud’ computing became extremely popular, as internal
teams had trouble building out servers at the rate applications
needed them.

Introduction viii

Even with virtualization, it was daunting managing tens,
hundreds, and now thousands of different applications.

Tools like Ansible, Chef, Puppet and management tools from
AWS and other cloud providers automate and abstract things
away to make them more manageable, and for some organi-
zations, this level of automation is sufficient.

But Kubernetes takes this idea of automated cluster manage-
ment to the logical end.

Instead of managing servers and the relationships between
them externally and infrequently, it abstracts everything
about the system into code, fulfilling the dream of having
true ‘Infrastructure as Code’.

Kubernetes sees a pool of servers, and application (‘workload’)
definitions. It’s scheduler assigns applications to your servers
in the most efficient manner, and wires them together, even
integrating them with external databases, load balancers, and
3rd party services.

It even handles things like auto-scaling resources, and DNS
and certificate management for web applications!

There’s a good reason Kubernetes has taken hold of the
industry like wildfire—though it is complex, it solves a huge
number of real business needs. And it has becomemuch easier
to deploy and manage, whether you run one cluster or many.

Examples Repository

There are many code examples (manifests, configuration, etc.)
throughout this book. Most of the examples are in the Ku-
bernetes 101 GitHub repository, so you can browse the code

https://github.com/geerlingguy/kubernetes-101
https://github.com/geerlingguy/kubernetes-101

Introduction ix

in its final state while you’re reading the book. Some of the
line numbering may not match the book exactly (especially
if you’re reading an older version of the book!), but I will try
my best to keep everything synchronized over time.

Other resources

We’ll explore all aspects of using Kubernetes in this book, but
there’s no substitute for the wealth of documentation and
community interaction that make these tools great. Check out
the links below to find out more about the tools and their
communities:

• Kubernetes Documentation - Covers Kubernetes usage
patterns in depth.

• Kubernetes Glossary - If there’s ever a term in this book
you don’t seem to fully understand, check the glossary.

• Kubernetes SIGs and Working Groups - These groups
are where major changes and new features are
discussed—consider joining one of these groups if the
topic is of importance to you, or just follow along with
the groups you’re interested in.

• Kubernetes on GitHub - The official Kubernetes code
repository, where the magic happens.

• Kubernetes on Slack - Chat with other Kubernetes users
in the official Slack.

• Kubernetes Blog

The official documentation is continually updated and is very
thorough. This book is meant as a supplement to, not a
replacement for, the official documentation!

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/glossary/
https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
https://kubernetes.io/blog/

Chapter 1 - Hello,
Kubernetes!
In the introduction, we learned where Kubernetes came
from—the need for better management of an ever-increasing
array of applications running on an ever-more-diverse and
expansive set of servers in clusters, whether on-premise or in
a cloud.

The basic unit that we’ll deal with early in our Kubernetes
journey is the Pod.

Pods are deployed to individual servers by Kubernetes, and
they can contain one or more containers.

We’ll get to all what all that means later, but Kubernetes
distributes workloads on your servers using Pods, and can
move Pods wherever there is capacity.

Kubernetes Origins

In the early 2000s, Google introduced a cluster management
service they called Borg. It ran hundreds of thousands of jobs
and services on their internal clusters, helming a “collective”
of tens of thousands of Google’s servers. Some of the engi-
neers decided to turn Borg into a more accessible open source
tool, capable of running outside Google’s infrastructure, and
built a new version of Borg using the up-and-coming Go
programming language.

Chapter 1 - Hello, Kubernetes! 2

The engineers originally wanted to call the new software
“Project Seven” after another Borg character, Seven of Nine,
but they didn’t want to have the new software encumbered by
lawyers suing over the rights to a Star Trek character’s name,
so they decided to change it slightly, but still keep the spirit
of that progression of naming. So they called it “Kubernetes”.

The Kubernetes logo

The Kubernetes logo has seven spokes around a central hub,
hearkening back to “Project Seven”. And the helm is a callback
to the nautical terminology prevalent in Star Trek lore. In the
Kubernetes ecosystem, you’ll find a lot of nautical terminol-
ogy for the same reason.

For instance, “Helm” was the first big package manager for
Kubernetes, and is still very popular today.

Something else you might see a lot is the term ‘k8s’, which
is a numeronym. These terms, like “a11y” for “accessibility”,
work out to the first and last letter of a word or phrase, with
the number of letters between in the middle. Often, ‘k8s’ and
‘Kubernetes’ are used interchangeably.

A year after Kubernetes’ debut, Google and the Linux Founda-

Chapter 1 - Hello, Kubernetes! 3

tion created the CloudNative Computing Foundation (CNCF).
The CNCF was created to foster development and collabora-
tion in the realm of cloud native open source projects.

Kubernetes was the first CNCF project, but the overall
‘landscape’ (pictured above) has grown substantially as more
cloud-native tools and vendors have joined the fray.

But don’t be worried if that image is overwhelming; to be
productive in Kubernetes, you don’t need to know about more
than a few of the projects in the CNCF landscape!

Is Kubernetes Right for You?

Kubernetes is a powerful tool, but it does have a learning
curve, and requires more baseline infrastructure to run. There
are times when it’s exactly the right tool for the job, and there
are times when it is best to ignore it, especially for simpler
applications.

Chapter 1 - Hello, Kubernetes! 4

My own website, jeffgeerling.com, is good example of a
project that doesn’t need Kubernetes; it gets a decent amount
of traffic, but it runs great on a single VPS running Nginx,
PHP, and MariaDB.

My website doesn’t need ‘five nines’ of uptime, but even so, I
can restore it from a backup within less than an hour, because
I manage the server’s configuration using Ansible. That setup
has worked for nearly a decade, and it will probably work just
fine for a decade more, on a single server.

On the other hand, I also operate two ‘Software as a Service’
products, both of which run applications spanning dozens of
servers, with a highly dynamic environment.

Traditionally, I would use many automation scripts to pass
data between the servers, move applications as needed, and
try to keep track of server outages as well as I could.

Kubernetes is an excellent fit for these systems, because it
takes care of migrating my apps between servers, handling
fleet-wide upgrades, and making sure all these various appli-
cations stay running their best, with no outside intervention.

I’m already paying for dozens of larger servers, so the over-
head Kubernetes requires for a high-availability control plane,
and the overall operational complexity, is much less in propor-
tion to the needs of the application.

My personal website’s server cost would likely quadruple,
with no tangible benefit, if I moved to Kubernetes.

My SaaS products’ infrastructure costs would increase by
barely a few percentage points, but the time and server
scheduling efficiency savings would lead to a much greater
savings over the long term.

https://www.jeffgeerling.com/

Chapter 1 - Hello, Kubernetes! 5

On top of that, if you choose to manage your own Kubernetes
infrastructure (without using a managed provider), you take
on additional maintenance overhead keeping everything up
to date and running efficiently.

Kubernetes Environments

Okay, so we know a bit about Kubernetes’ history, and how to
determine whether it’s the right fit for our project. Let’s start
using Kubernetes!

But wait, the first problem you run into is there are actually
many different ‘flavors’ of Kubernetes you can use when you
want to try it out.

One easy way to get started with the full-fledged Kubernetes
distribution is to set up a cluster using Kubeadm. This is the of-
ficial tool from Kubernetes, designed to bootstrap Kubernetes
clusters on bare metal or cloud instances. It doesn’t include
any extra frills, it just gets Kubernetes’ control plane running
and attaches worker nodes to it.

But the full Kubernetes install is a bit heavyweight, requiring
a couple gigs of RAM just to run Kubernetes, and that’s before
you add any of your applications running on top of it.

So there are more lightweight distributions of Kubernetes like
Rancher’s K3s, which even runs well on ARM single-board
computers like the Raspberry Pi!

We’ll cover running Kubernetes on Raspberry Pis
in chapter 8!

Kubernetes-in-Docker, otherwise known as kind, is partic-
ularly useful for Kubernetes development, and I use it for

https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://rancher.com/docs/k3s/latest/en/
https://kind.sigs.k8s.io/

Chapter 1 - Hello, Kubernetes! 6

almost all the continuous integration (CI) jobs I run. It builds
Kubernetes clusters using one or more Docker containers, and
is quick to build and tear down, but it lacks some conve-
niences that make it difficult to use for general Kuberetes
work, and is not meant for production environments.

For most people, Minikube is the most user-friendly way
to develop and test things in Kubernetes locally. It’s easy
to install and includes many addons to make Kubernetes
development efficient on your computer.

There are a lot of other distributions I haven’t mentioned
which may interest you, like OpenShift, which requires even
more resources but is supported by RedHat, MicroK8s, an-
other lightweight distribution by Canonical, or even k0s,
yet another lightweight distribution, distributed as a single
binary.

Now that you know some of the common Kubernetes distri-
bution, it’s time to build our first Kubernetes cluster—with
Minikube!

Instructions for Minikube

Minikube and kubectl are all we need to build our first local
Kubernetes cluster:

1. InstallMinikube: brew install minikube (on aMacwith
Homebrew)

2. Install kubectl: brew install kubectl

3. Start a Minikube cluster: minikube start

Then you can check on the cluster’s state, to make sure all the
nodes—in this case, just one master node—are running and
ready:

https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://brew.sh/

Chapter 1 - Hello, Kubernetes! 7

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 91s v1.19.4

Now that we have a running cluster, it’s time to deploy a
lightweight application to it, just to make sure it’s working:

$ kubectl create deployment hello-k8s --image=geerl\

ingguy/kube101:intro

deployment.apps/hello-k8s created

It seems like it’s deploying correctly, so the next step is
to make it so we can access the deployed application from
outside the cluster. By default, Kubernetes sets up an internal
network, but does not expose any of your applications to the
outside world. Here’s how to ‘expose’ the deployment to the
outside using a Kubernetes service:

$ kubectl expose deployment hello-k8s --type=NodePo\

rt --port=80

service/hello-k8s exposed

We’ll get into what NodePort means later, but for now, we
should be able to access the deployment from our computer.
Minikube has a handy command that will open up the service
in a web browser directly:

$ minikube service hello-k8s

<should launch your web browser>

But you could also find the IP address for the cluster using
minikube ip, then pair that with the high-numbered port that
is returned when you run kubectl get services hello-k8s.

Chapter 1 - Hello, Kubernetes! 8

When you’re finished using the cluster, run minikube halt to
stop it, or minikube delete to delete the cluster.

Building the example Docker
image

There is a Dockerfile in this directory, which is used by
GitHub Actions to build the geerlingguy/kube101:intro im-
age on Docker Hub.

That image is used in this chapter to demonstrate a simple
Kubernetes deployment.

If you want to build the image on your own, locally, you can
run:

$ docker build -t geerlingguy/kube101:intro

And to run the image on its own, run:

$ docker run -d -p 80:80 geerlingguy/kube101:intro

Once it’s running, access the demo page at http://localhost,
and you should see one of the most popular YouTube videos
from the days before music videos and vlogging took over the
platform:

https://hub.docker.com/repository/docker/geerlingguy/kube101
https://hub.docker.com/repository/docker/geerlingguy/kube101

Chapter 1 - Hello, Kubernetes! 9

YouTube used to be a simpler place

Chapter 2 - Containers
Containers are the building block of any Kubernetes cluster.
In this chapter, we’re going to learn what containers are, how
to build them, and how to manage container images in a
registry.

We’ll even build a custom Go application and show how it
can be deployed in a container image.

Why does Kubernetes use
containers?

Containers solve many of the pain points inherent to deploy-
ing applications to servers.

First and foremost, for developers, containers help solve the
‘works onmymachine’ problem. I knowwhen I started in pro-
gramming, the first week or two on a project were typically
spent setting up local tools and maybe even a build system
just so I could start developing an app on my workstation.

If well-documented, this process was not prone to failure, but
it was still burdensome. But in reality, so often projects relied
on many tools and build steps that were fragile and prone
to breaking across different systems, so even keeping an app
running locally was painful.

Containers solve that problem bymaking application environ-
ments:

Chapter 2 - Containers 11

• Portable
• Isolated
• Consistent
• Lightweight

And they do that by throwing away certain things like stateful
data and full resource virtualization and isolation like a
Virtual Machine has.

Containers do work with stateful applications, but do so by
defining clear boundaries, like what directories or devices are
mounted inside the container for persistent data.

Containers are not full virtual machines, and even though
you may be able to simulate a VM-like environment inside a
Kubernetes cluster to support a legacy application, that topic
will not be covered in this book.

Container History: Vendor Wars

‘Containers’ as we know them today have actually been a
capability of BSD and Linux for years prior to the more

Chapter 2 - Containers 12

standardized container management tool ‘Docker’.

You could use LXC and cgroups or jails to maintain some level
of resource isolation and lightweight virtualization.

But there wasn’t a common standard for how to build these
environments or share them between developers and opera-
tions teams.

Docker, containerd, and runC

Released in 2013, Docker standardized container definitions
in a ‘Dockerfile’, and built Docker Hub, a central registry for
container images.

Docker was quickly adopted by developers who loved the
lightweight portable environments, but it took longer to gain
acceptance in production environments, because the early
monolithic versions were sometimes less than rock solid.

Also, since adoption was initially driven by the development
side, early usage of containers often led to ‘shipping every-
thing’ in a container image for ease of use:

Chapter 2 - Containers 13

Docker evolved over the years to be more efficient and stable,
developers (for the most part) started building more secure
and efficient containers, and the major components of the
monolith (running containers, building containers, the CLI,
etc.) were all broken up into more manageable projects.

Modern Docker uses containerd as a ‘container runtime’,
managing all aspects of container images and management.
containerd in turn lauches containers using an ‘OCI-
compliant’ container runtime (we’ll talk about what that
means soon), most often runC.

Both of these tools are part of ‘Docker Engine’, which is also
installable on workstations as part of ‘Docker Desktop’, which
adds on an easy-to-use container management UI.

Chapter 2 - Containers 14

rkt and CoreOS

Around the time Docker was seeing more production usage,
CoreOS built rkt, which was a more ‘cloud-native’ competi-
tor to Docker’s own engine. rkt also added concepts like
‘Pods’, which allowedmultiple containers to runwith a shared
context.

CoreOSwas acquired by RedHat in 2018, though, and rkt and
many of the other CoreOS tools built up around the container
ecosystem were deprecated and eventually end-of-lifed.

Kubernetes Container Runtime

And this brings us to Kubernetes’ ‘Container Runtime Inter-
face’. In the midst of the vendor wars over different container
engines like Docker and rkt, the Kubernetes community
and CNCF decided to work on standardizing the interface
between clustering software like Kubernetes and running
containers.

One of the fruits of the ‘Open Container Initiative’ (OCI)
was the ‘Container Runtime Interface’, which defined how
container runtimes interact with Kubernetes.

CRI-O

Some of the concepts behind rkt were inherited by Red Hat’s
follow-on cloud-native runtime, CRI-O.

CRI-O’s early claim to fame was being lightweight compared
to the Docker runtime, and built entirely inside the ‘cloud-
native’ ecosystem, tailored to Kubernetes workloads.

https://kubernetes.io/docs/setup/production-environment/container-runtimes/

Chapter 2 - Containers 15

Modern Container Runtime options

Today, Kubernetes clusters typically use either CRI-O or
containerd as their container runtime.

What does that mean for you? Well, if you’re not building
a custom Kubernetes cluster, not much. As we’ll find in a
minute, the building and management of container images
outside of a running cluster uses different tools entirely!

But it is helpful to at least understand the heritage and goals
of different container tools that are at the heart of Kubernetes’
architecture.

For even more depth on this topic, please check out Evan
Baker’s excellent overview, A Comprehensive Container Run-
time Comparison, on the Capital One website.

How do you build a container?
Docker vs Buildah

Example: Webserver container from Chapter 1

$ docker images

$ docker build -t geerlingguy/kube-101:intro

$ docker images

https://www.capitalone.com/tech/cloud/container-runtime/
https://www.capitalone.com/tech/cloud/container-runtime/

Chapter 2 - Containers 16

$ docker run --rm -p 80:80 geerlingguy/kube101:intro

Instructions for ‘Hello Go’ app

There is a very simple Go-based web app that responds to
HTTP requests on port 8180 in cmd/hello/hello.go.

After installing Go, you can run the app directly with the
command:

$ go run cmd/hello/hello.go

Or you can build the Go command hello binary using:

$ go build cmd/hello/hello.go

And then run it and monitor requests (access
localhost:8180/some-path-here in a browser):

$./hello

2028/10/24 17:30:36 Starting webserver on :8180

2028/10/24 17:30:59 Received request for path: /som\

e-path-here

After you’re finished, you can remove the binary with rm

hello.

https://golang.org/doc/install

Chapter 2 - Containers 17

Build the ‘Hello Go’ Docker
container image

Next up, wewant to set up a container build environment that
can build the Go application and then also run it (but without
all the Go language cruft) in a trimmed down container image.

There is a Dockerfile in this directory containing a multi-
stage Docker build layout which first builds the Go app
using the official golang Docker image, then builds the final
container based on Alpine Linux (using the official alpine
Docker image).

To build the container, run:

$ docker build -t geerlingguy/kube101-go .

Once the container is built, you can see it in your list of docker
images, and you can run it with the command:

$ docker run --rm -p 8180:8180 geerlingguy/kube101-\

go

Push the container image to a
private Docker registry

When you’re satisfied the container image works correctly, go
ahead and push it up to a Docker registry.

For my example, I’m pushing it to a private Docker Hub
repository named geerlingguy/kube101-go:

Chapter 2 - Containers 18

$ docker push geerlingguy/kube101-go

Note: Pushing to a registry typically requires au-
thentication. Please read the documentation for a
guide on how to make sure you are authenticated
to your Docker Hub (or other provider) account.

Also, it’s likely you won’t be able to push to my
namespace, so you might want to try using your
own namespace instead of geerlingguy ;-)

Chapter 3 - Deploying
apps
In this chapter, we’re going to deploy, expose, scale, update,
and roll back an app in Kubernetes.We’ll use the Hello Go app
and container image from Chapter 2 to learn how to manage
apps into Kubernetes.

First, we’ll go over how to create a cluster in the cloud for
testing, in case you can’t install Minikube locally.

Creating a Linode Cluster for
cloud-based testing

If you’re not able to install Minikube, you can use free
credit from Linode to build small Kubernetes clusters for
development and testing.

To do that, visit: https://linode.com/geerling.

Sign up for a new account, then in the Linode Cloud control
panel, go to the Kubernetes section. Create a new cluster, add
a few nodes to the default node pool, and click “Create”.

Chapter 3 - Deploying apps 20

Creating a Kubernetes cluster on Linode

The process takes about two minutes, and at the end, you can
download the ‘Kubeconfig’ file to your computer, so you can
use it with kubectl to administer the cluster.

On my computer, I copied the file into my .kube directory:

$ mv ~/Downloads/kube101-kubeconfig.yaml ~/.kube/co\

nfig-kube101

Then I made sure kubectl would use this cluster config:

$ export KUBECONFIG=~/.kube/config-kube101

Now if I run any kubectl commands, they will work on the
new Linode cluster!

Chapter 3 - Deploying apps 21

$ kubectl get nodes

NAME STATUS ROLES AGE\

VERSION

lke14312-17562-5fc5708862ca Ready <none> 1h \

v1.18.8

lke14312-17562-5fc570886f7d Ready <none> 1h \

v1.18.8

lke14312-17562-5fc57088781f Ready <none> 1h \

v1.18.8

Deploying Hello Go into
Kubernetes

The example you’re about to run will fail. Don’t
worry, that failure is an important part of this
chapter!

After creating a local cluster with minikube start, or a cloud-
based cluster, it’s time to deploy ‘Hello Go’ into the cluster!

You can do that with:

$ kubectl create deployment hello-go --image=geerli\

ngguy/kube101-go:1.0.0

Then watch the deployment status with watch kubectl get

deployment hello-go.

Hmm… the rollout seems to be failing, as it is not showing
that the Deployment is reaching a ‘ready’ state:

Chapter 3 - Deploying apps 22

NAME READY UP-TO-DATE AVAILABLE AGE

hello-go 0/1 1 0 51s

Let’s check on the Pods for this Deployment and see what
might be happening:

$ kubectl get pod -l app=hello-go

You’ll likely see a status of ErrImagePull or
ImagePullBackOff. Let’s dig in deeper and use the kubectl

describe command to get the details:

$ kubectl describe pod -l app=hello-go

Name: hello-go-5944979865-qfxfc

Namespace: default

...

Warning Failed 2s (x3 over 43s) kubelet \

Failed to pull image "geerlingguy/kube101-\

go:1.0.0": rpc error: code = Unknown desc = Error r\

esponse from daemon: pull access denied for geerlin\

gguy/kube101-go, repository does not exist or may r\

equire 'docker login': denied: requested access to \

the resource is denied

Ah, so Kubernetes can’t pull that image, since it’s in a private
Docker registry. We’ll have to tell Kubernetes how to authen-
ticate to Docker Hub, since that’s where the image lives. And
we can do that using a special kind of Kubernetes Secret called
a Docker Registry secret:

Chapter 3 - Deploying apps 23

$ kubectl create secret docker-registry regcred \

--docker-username=geerlingguy \

--docker-password=[TOKEN GOES HERE] \

--docker-email=geerlingguy@mac.com

For Docker Hub, you would put in your username, pass-
word (an Authentication Token, which can be generated in
your Account Settings in the ‘Security’ section), and email
address. For other registries, you would also need to add a
--docker-server URL.

Once you create the secret, you need to modify the hello-go
deployment to make sure it knows to use that secret.

So edit the deployment with:

$ kubectl edit deployment hello-go

And add a new imagePullSecrets: section under
spec.template.spec like so:

spec:

...

template:

...

spec:

imagePullSecrets:

- name: regcred

containers:

- image: geerlingguy/kube101-go:1.0.0

Then check on the progress of the rollout with watch kubectl

get deployment hello-go. Assuming you’reme, it would now

Chapter 3 - Deploying apps 24

work, because youwould have a valid access token that grants
you access to the private geerlingguy/kube101-go image.

But since you’re not me, and hopefully you don’t have access
to my Docker Hub acount, you will need to switch to a
publicly available image for the rest of this example, so run:

$ kubectl set image deployment/hello-go kube101-go=\

geerlingguy/kube101:hello-go

And confirm the image has been pulled:

$ kubectl describe pod -l app=hello-go

...

Events:

Type Reason Age From Messa\

ge

---- ------ ---- ---- -----\

--

Normal Pulling 17s kubelet Pulli\

ng image "geerlingguy/kube101:hello-go"

Normal Pulled 11s kubelet Succe\

ssfully pulled image "geerlingguy/kube101:hello-go"\

in 5.649981045s

Normal Created 11s kubelet Creat\

ed container kube101-go

Normal Started 11s kubelet Start\

ed container kube101-go

Exposing the Hello Go App

The next step to having a usable app is to expose it, to make
it visible and usable outside the cluster.

Chapter 3 - Deploying apps 25

$ kubectl expose deployment hello-go --port=80 --ta\

rget-port=8180 --type=NodePort

The kubectl expose command sets up a Service, which allows
Kubernetes to route requests to one or more Pods matching a
set of conditions.

In this case, we are setting up a Service which will route
requests to all Pods running in the hello-go deployment, and
it will receive requests on port 80 and direct them to the
container’s port 8180—which is the port we chose to use for
our Hello Go application.

Finally, we set the type to NodePort, and this makes it so the
Hello Go App Service will be accessible on a given port on
every node in the cluster.

In Minikube’s case, the service would be available on the
Minikube IP address, which you can get with minikube ip.

On a Linode Kubernetes cluster, it would be available on any
of the cluster nodes’ IP addresses.

You can get the port using:

$ kubectl get service hello-go

NAME TYPE CLUSTER-IP EXTERNAL-IP \

PORT(S) AGE

hello-go NodePort 10.97.34.201 <none> \

80:32617/TCP 3m

You can access the service at any server’s IP address,
using the port listed in the hello-go service, e.g.
http://102.52.28.5:32617.

Chapter 3 - Deploying apps 26

Hello Go, successfully deployed

Note: If using a Mac running Apple Silicon and
running your cluster via Minikube, the easiest
way to access a service like this one is to run
minikube service hello-go (add --url to not
automatically launch your web browser). This
sets up a tunnel into the Minikube environment.

This may change in future releases of Minikube,
but as of 2021 this is the only way to reliably
access services running in Minikube on modern
Macs.

Scaling the Hello Go App

Next let’s scale the App. Since it’s stateless, meaning there’s
no persistent data or external database it needs to interact
with, it should be easy to scale up Hello Go by increasing the
number of ‘replicas’ in the deployment.

Edit the deployment with:

Chapter 3 - Deploying apps 27

$ kubectl edit deployment hello-go

Modify the replicas line, and set it to 3. Save the modifica-
tions.

Now check the deployment and verify it rolled out two
additional Pods:

$ kubectl get deployment hello-go

NAME READY UP-TO-DATE AVAILABLE AGE

hello-go 3/3 3 3 29m

To watch traffic to the pods, you can tail all the logs in all the
pods concurrently with this handy command:

$ kubectl logs -f -l app=hello-go --prefix=true

This will let you see which pod and container are serving
which request. Head over to a web browser (or two!) and load
the IP address and NodePort for the Hello Go service. Refresh
the page a few times, and observe the logged requests.

You might note that the requests seem ‘sticky’; one browser
keeps hitting the same pod, while a different browser hits
a different pod every time. Kubernetes’ Service layer does
have some customizability in this regard (how it distributes
requests to different Pods), but if you need more customiza-
tion, you might want to use an Ingress Controller. We’ll talk
about those later.

Press Ctrl-C to stop watching the logs.

Chapter 3 - Deploying apps 28

Updating the Go App

Now it’s time to update the app. Marketing wanted a huge
change—a change from “Hello” to “Hi” since that sounds
more welcoming for the company’s users. The developers just
checked in a change and pushed up a new image version:
hello-go-v2.

To deploy that image version to the Kubernetes cluster, you
can modify the image directly:

$ kubectl set image deployment/hello-go kube101-go=\

geerlingguy/kube101:hello-go-v2

And you can watch how the pods are replaced using:

$ watch kubectl get pods -l app=hello-go

And confirm the version of the container image used with
kubectl describe, either inspecting the Deployment or the
Pods.

Version 2 is so much more welcoming!

Chapter 3 - Deploying apps 29

Rolling back the Deployment

Let’s say Marketing just realized that the word “Hi” means “I
will destroy you” in an as-yet-unknown alien language, and
they want you to quickly revert to the previous version of the
App.

The fastest way to do that is to use kubectl rollout undo,
and we can run this command to undo the latest version of
the hello-go Deployment:

$ kubectl rollout undo deployment hello-go

After doing that, check on the version of the container im-
age of the deployment with kubectl describe deployment

hello-go, and verify it’s been reverted.

Whew! What a day. If you’re using a test cluster, be sure to
delete it with minikube delete, or by deleting the cluster in
the Linode Kubernetes control panel.

Chapter 4 - Real-world
apps

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

We’re going to deploy our first real-world application—a
Drupal website—into Kubernetes. We’ll begin by showing
how Drupal is traditionally deployed on a LAMP server,
then explore how that legacy architecture translates into
containers and Kubernetes using Helm and custom manifests.

Installing Drupal on a Traditional
LAMP server

Drupal is one of hundreds of popular PHP applications that
was originally designed for the still-popular “LAMP” stack:

Chapter 4 - Real-world apps 31

Over the years, the stack has evolved, and there are often
other technologies added on top, but the basic components are
a webserver, a database, and PHP, running on top of Linux.

LAMP Server Setup for drupal

The examples and code used in this chapter can
be found in the traditional-lamp-setup direc-
tory in this book’s example code repository.

This guide assumes you’re running an Ubuntu 20.04 VM.
The example linked in the tip above includes a Vagrantfile
that you could use to build a local VM inside VirtualBox
using Vagrant—but this example should work on any similar
Ubuntu server or VM.

Log into the VM (using vagrant ssh if you’re following along
with the book’s example), then run the following commands:

https://github.com/geerlingguy/kubernetes-101/blob/master/episode-04/traditional-lamp-setup

Chapter 4 - Real-world apps 32

Update apt caches.

$ sudo apt update

Install MySQL (or in this case, MariaDB) and unzi\

p packages.

$ sudo apt install -y mariadb-server mariadb-client\

unzip

Run through the database installation process.

$ sudo mysql_secure_installation

Create a Drupal database while logged into the My\

SQL cli.

$ sudo mysql -u root

CREATE DATABASE drupal;

GRANT ALL ON drupal.* TO 'drupal'@'localhost' IDENT\

IFIED BY 'mypassword';

FLUSH PRIVILEGES;

\q

Install PHP.

$ sudo apt install -y php php-{cli,fpm,json,common,\

mysql,zip,gd,intl,mbstring,curl,xml,pear,tidy,soap,\

bcmath,xmlrpc}

Install Apache with mod_php.

$ sudo apt install -y apache2 libapache2-mod-php

Configure a couple important PHP settings.

$ sudo nano /etc/php/7.4/apache2/php.ini

Find the following lines and change them to these settings and

Chapter 4 - Real-world apps 33

save the file:

memory_limit = 512M

date.timezone = America/Chicago

And back to running commands:

Configure a Drupal virtual host for Apache.

$ sudo nano /etc/apache2/sites-available/drupal.conf

1 <VirtualHost *:80>

2 ServerName example.com

3 ServerAlias www.example.com

4 ServerAdmin webmaster@example.com

5 DocumentRoot /var/www/html/drupal/web

6

7 CustomLog ${APACHE_LOG_DIR}/access.log combined

8 ErrorLog ${APACHE_LOG_DIR}/error.log

9

10 <Directory /var/www/html/drupal/web>

11 Options Indexes FollowSymLinks

12 AllowOverride All

13 Require all granted

14 RewriteEngine on

15 RewriteBase /

16 RewriteCond %{REQUEST_FILENAME} !-f

17 RewriteCond %{REQUEST_FILENAME} !-d

18 RewriteRule ^(.*)$ index.php?q=$1 [L,QS\

19 A]

20 </Directory>

21 </VirtualHost>

(We’ll finish setting up Apache later, after we have Drupal
installed.)

Chapter 4 - Real-world apps 34

Install Composer (https://getcomposer.org/downloa\

d/)

$ php -r "copy('https://getcomposer.org/installer',\

'composer-setup.php');"

$ php composer-setup.php

$ sudo mv composer.phar /usr/local/bin/composer

Prepare the /var/www directory.

$ sudo chown -R www-data:www-data /var/www

Create a Drupal project codebase with Composer as\

the Apache user.

$ sudo su -l www-data -s /bin/bash

$ composer create-project drupal/recommended-projec\

t /var/www/html/drupal

$ exit

Finish configuring Apache and restart it to pick \

up the new site.

$ sudo a2enmod rewrite

$ sudo a2ensite drupal.conf

$ sudo a2dissite 000-default.conf

$ sudo systemctl restart apache2

Visit the site in your browser: http://192.168.80.80/

Install Drupal (DB name: drupal, DB user: drupal, DB pass-
word: mypassword), and celebrate!

Automating the Installation

I should note that I do not set up servers using the technique
mentioned in the README above. Instead, I use tools like

Chapter 4 - Real-world apps 35

Ansible to automate every aspect of server provisioning and
setup.

But as with traditional architecture, you should not dive
into the deep end of Kubernetes without first understanding
the basics. You shouldn’t blindly run a 1,000 line Ansible
playbook without understanding how file permissions, app
configurations, and database connections work.

And you can’t just skip over all that stuff when you’re starting
out in Kubernetes either!

Installing Drupal on Kubernetes
using Bitnami’s Helm Chart

On that theme, there is a very popular packaging system
for Kubernetes called Helm. Helm is a convenient and fairly
common way to build templates for applications and deploy
and update them in clusters.

But one common pitfall I see is developers new to Kubernetes
picking up very good—but very complex—Helm charts, cus-
tomizing them a little bit, and running their applications this
way.

I do want to show you how to deploy Drupal using Helm
(which I’ll do shortly), but I am intentionally not going to
go deep into Helm beyond the basics, because I would rather
teach how the underlying components work together before
I recommend using complex templates and magic tools to
manage resources in Kubernetes!

Chapter 4 - Real-world apps 36

Install Helm

Install Helm; you can do this using brew install helm on a
Mac, or follow the Helm install instructions otherwise.

Install the Drupal Chart

This guide assumes you have a Kubernetes cluster running
somewhere (e.g. by running minikube start:

Add Bitnami's Helm Chart repository.

$ helm repo add bitnami https://charts.bitnami.com/\

bitnami

Install Drupal in your default namespace with the\

release name 'mysite'.

$ helm install mysite bitnami/drupal

Now, at this point, the Helm Chart will output a message
saying you can monitor the Service it sets up for Drupal until
a ‘LoadBalancer’ IP address is assigned, using the command:

$ kubectl get svc --namespace default -w mysite-dru\

pal

That’s great, but out of the box, Minikube, by virtue of its ar-
chitecture, doesn’t have a Load Balancing layer like Amazon
ELBs or Linode’s NodeBalancers built into it. Therefore you’ll
be waiting forever!

https://helm.sh/docs/intro/install/

Chapter 4 - Real-world apps 37

Exposing a LoadBalancer in Minikube

So we’ll use a little Minikube trick to enable a LoadBalancer,
at least temporarily. Open a separate Terminal window and
run the command:

$ minikube tunnel

This command will take a second to start, then ask for your
account password to elevate privileges and create a new
LoadBalancer on your machine for services like Drupal to use.

And if you run that command andwatch the original terminal
window, you’ll notice it assigns an External IP once the
LoadBalancer is running. Nice!

Now you can grab that IP address, paste it in a browser
window, and access your Drupal site!

Changing Chart Options

I won’t go through every option available with Helm in this
chapter, but I will mention that well-maintained Charts like
this Drupal chart have configurable options that allow you
to control almost any aspect of what is deployed, including
things like the Service type.

This Chart’s documentation includes a large selection of
configurable Parameters which you can specify in a Helm
values file.

So, if you wanted, you could change the release from using
a LoadBalancer to a NodePort by setting service.type to
NodePort.

https://github.com/bitnami/charts/tree/master/bitnami/drupal/#installing-the-chart
https://github.com/bitnami/charts/tree/master/bitnami/drupal/#installing-the-chart

Chapter 4 - Real-world apps 38

Cleaning Up

You can remove the Drupal site with:

$ helm uninstall mysite

R

ight!]Drupal Directly in Kubernetes - Let’s Do it [Mostly]
Right!

Now let’s work on deploying Drupal into Kubernetes the hard
way.

Some of the magic the Helm chart covered up:

1. Choosing or building and managing container images
for Apache, MySQL, and PHP.

2. Generating a Drupal codebase.
3. Connecting all these services together correctly.

We are going to run through how to do everything step by
step, and hopefully have a running Drupal installation by the
end of this chapter!

I’m going to switch things up and deploy to a real Kubernetes
cluster, in this case a cluster running on Linode (since they
are still offering a free $100 credit using this link).

https://linode.com/geerling

Chapter 4 - Real-world apps 39

Deploying the Drupal Kubernetes
Manifests

Please see the README inside the k8s-manifests for further
instructions.

This directory contains two deployment manifests, one for
MariaDB, and one for Drupal (which builds a Drupal Deploy-
ment running Drupal on top of Apache + PHP).

To apply them to a Kubernetes cluster (e.g. with Minikube:
minikube start), run the commands:

Create a namespace for the Drupal site.

$ kubectl create namespace drupal

Create the MySQL (MariaDB) Deployment.

$ kubectl apply -f mariadb.yml

Create the Drupal (Apache + PHP) Deployment.

$ kubectl apply -f drupal.yml

You can then observe the status of the deployments:

$ kubectl get deployments -n drupal -w

Then press Ctrl+C to stop watching the deployment rollout.

Working in Namespaces

If you want to do a lot of work in a particular namespace (e.g.
drupal), you can set the current namespace context using:

https://github.com/geerlingguy/kubernetes-101/blob/master/episode-04/k8s-manifests/README.md

Chapter 4 - Real-world apps 40

$ kubectl config set-context --current --namespace=\

drupal

And you can confirm which namespace context you’re in
with:

$ kubectl config view | grep namespace:

When you’re done performing actions (e.g. kubectl get pods)
only within that namespace, run:

$ kubectl config set-context --current --namespace=\

""

Accessing the Drupal site

After the Drupal deployment is complete, you can see access
it via:

In Minikube, this will open the URL directly.

$ minikube service -n drupal drupal

In other clusters, get the service to get the Nod\

ePort.

$ kubectl get service -n drupal drupal

That will give you the NodePort on which the service is
exposed, but what about the IP address? Well, for many
commands in Kubernetes, they give a brief summary by
default, but you can get a lot more information adding -o

wide:

Chapter 4 - Real-world apps 41

$ kubectl get nodes -o wide

Now you can take the IP address of any node, and pair that
with the NodePort that maps to TCP port 80 on Drupal’s
service, and access the site. You should be taken to the Drupal
installer UI.

And you can access the Drupal container’s Apache logs with:

$ kubectl logs -f -n drupal -l app=drupal

Install the Drupal site using the UI, and create an Article
(under Content > Add content > Article) with an image inside
the Body text.

Scaling the Drupal deployment

Go ahead and edit the Drupal deployment:

$ kubectl edit deployment -n drupal drupal

Set replicas to 3, and save the changes.

Watch the Pods as they are deployed in the scale-up event:

$ kubectl get pods -n drupal -w

But oh no! It seems like these pods are stuck on ‘Init’. Investi-
gate further, with:

$ kubectl describe pod -n drupal -l app=drupal

Chapter 4 - Real-world apps 42

You might notice a Multi-Attach error. It seems that our
fancy Drupal deployment—which is similar to every other
Drupal, Wordpress, and similar LAMP-based deployment I
see in Kubernetes tutorials, has a major problem: you can’t
scale it up!

There goes one of the major advantages we thought we’d get
with Kubernetes… or does it? In the next chapter we’ll dig
deeper into scaling Drupal, accessing Drupal with a Domain
using Ingress, SSL, and other real-world app concerns.

Cleaning up

When you’re finished testing, one of the best advantages of
using Kubernetes namespaces is the easy ability to clean up
everything in the namespace.

All you have to do is delete the namespace, and Kubernetes
will clean up everything inside:

$ kubectl delete namespace drupal

After a minute or two, all traces of Drupal should be gone.
Sometimes there may be remnants, however, like persistent
volumes that are ‘retained’ for safekeeping (if you’re using
Linode, for example). Go ahead and delete those with:

$ kubectl get pv | grep Released | awk '$1 {print$1\

}' | while read vol; do kubectl delete pv/${vol}; d\

one

Confirm the volumes have been deleted in the cloud
provider’s UI as well; for Linode, at least, deleting the PV via
Kubernetes does not trigger a delete of the underlying block
storage device!

Chapter 5 - Scaling
Drupal in k8s

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

We’re going to solve the problem we ran into last chapter: fig-
uring out how to scale Drupal with a shared file system. We’ll
also explore Horizontal Pod Autoscaling and high-availability
database options.

Fixing the scalability issue with
Drupal Pods

Last chapter, we tried increasing the replica count beyond
1 Pod for the Drupal Deployment, but got a “Multi-Attach
error”, because the default block storage that was connected
to the Drupal pod doesn’t have the ability to be attached to
multiple Pods at the same time.

But if you want to scale up Drupal, Drupal has to be able to
read and write files to a shared, persistent filesystem!

Chapter 5 - Scaling Drupal in k8s 44

The problem is you can only use the ‘ReadWriteOnce’ storage
mode for normal cloud storage, like Amazon EBS volumes, or
Linode Volumes.

So to make ‘ReadWriteMany’ volumes available, we have to
set up a different storage provisioning system for your cluster.

Shared Storage Options

In many ways, the simplest and most reliable option is to
use a shared filesystem service from your cloud provider, for
example, Amazon EFS.

Running a filesystem cluster, whether it’s running with Ceph,
Gluster, NFS, or some other storage technology, can be very
difficult. The configuration is complex, there are many mov-
ing parts, backups can be tricky, and data can easily be lost if
you don’t know what you’re doing!

Cloud systems like Amazon EFS make it so you click a button
and have shared storage available, so I usually recommend it
if you can use it in your own cloud environment.

But what if you’re running a bare metal Kubernetes cluster on
your own servers? Or if you’re on a cloud environment that
doesn’t have something like EFS—for example, with Linode
currently?

Rook and Ceph

Initially, I was going to set up this chapter’s demo using Rook
to manage an in-cluster CephFS clustered filesystem.

https://rook.io/

Chapter 5 - Scaling Drupal in k8s 45

But after spending almost an entire workday trying to find a
way to easily deploy a Rook/CephFS cluster into Kubernetes—
either in Minikube, Linode Kubernetes Engine, or even Ama-
zon’s EKS, I decided the complexity was not worth it.

However, I am a strong believer in Rook and CephFS, and they
make a potent combo for cloud-provider-agnostic flexible
storage options. If you have the time and inclination, it is
worth learning how they work, getting them running, and
seeing if Rookmight be the storage provisioner you should use
for your cluster—especially if you’re building on bare metal!

Anyways, to keep things a little simpler, while still achieving
the goal of having a shared storage provisioner running in the
cluster for scalability, I switched gears.

NFS

I settled on NFS for simplicity’s sake, and in some circum-
stances, it’s actually not a bad option to just run one simple
NFS server in production. That’s how I’ve had my Raspberry
Pi cluster set up for years, and it’s easy to maintain, pretty

Chapter 5 - Scaling Drupal in k8s 46

performant, and easy to restore from backups if the server
dies.

Set up an NFS server

Setting up NFS is not too complicated, especially if you just
need to be able to set up one shared directory, shared to one
private network.

There is an Ansible playbook with its own README guiding
you through the process in the nfs-server directory.

Reconfigure the Drupal
PersistentVolumeClaim for NFS

Assuming you have an NFS server running, and a Kubernetes
cluster running which can connect to the NFS server, you will
need to modify Drupal’s PersistentVolumeClaim to be able to
use the NFS storage.

https://github.com/geerlingguy/kubernetes-101/blob/master/episode-05/nfs-server

Chapter 5 - Scaling Drupal in k8s 47

But before you do that, you’ll need to configure the Kuber-
netes cluster itself to be able to connect a StorageClass to the
NFS server.

Set up NFS client provisioner in K8s

When you’re searching around for how to configure NFS in
Kubernetes so your Pods can use NFS-based volumes, you
might run into a little confusion; originally, there were two
provisioners:

• nfs-server-provisioner

• nfs-client-provisioner

The NFS Server provisioner would run in-cluster NFS in-
stances to allow pods to connect to them. And that’s great and
handy, but many people would rather manage NFS servers
separate from their clusters, and that’s where the NFS Client
provisioner comes in—it assumes you have an NFS server or
storage cluster running elsewhere, and provisions directories
inside an NFS share for PVCs in your cluster.

To add to the confusion, though, in 2020 both provisioners
were moved and slightly renamed, the server provisioner
moving to nfs-ganesha-server-and-external-provisioner, and
the client provisioner to nfs-subdir-external-provisioner.

To keep things simple, I’m just going to use a pre-existing
Helm Chart to deploy the client provisioner:

https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner

Chapter 5 - Scaling Drupal in k8s 48

1 helm repo add ckotzbauer https://ckotzbauer.github.\

2 io/helm-charts

3 helm install --set nfs.server=192.168.166.68 --set \

4 nfs.path=/home/nfs ckotzbauer/nfs-client-provisione\

5 r --version 1.0.2 --generate-name

For the nfs.server, use the Private IPv4 address for your NFS
server. For the nfs.path, set it to the path of an NFS share on
that server.

You can check if the provisioner is running with kubectl get

pods; make sure an NFS provisioner pod is running.

Deploy Drupal and MySQL (MariaDB)

Now modify the Drupal PVC definition in the drupal.yml
manifest to look like the following:

1 ---

2 kind: PersistentVolumeClaim

3 apiVersion: v1

4 metadata:

5 name: drupal-files-pvc

6 namespace: drupal

7 spec:

8 accessModes:

9 - ReadWriteMany # Was ReadWriteOnce before!

10 resources:

11 requests:

12 storage: 1Gi

13 storageClassName: nfs-client # This is new!

Since we’re now using nfs-client for the storage class, we
can set ReadWriteMany for the access mode, meaning our

Chapter 5 - Scaling Drupal in k8s 49

Drupal deployment should be able to scale beyond just one
Pod. Yay!

You can deploy Drupal and MariaDB now:

1 kubectl create namespace drupal

2 kubectl apply -f mariadb.yml -f drupal.yml

And monitor the deployment with kubectl get deployments

-n drupal -w.

Once Drupal is ready, get the NodePort with kubectl get

service -n drupal and an IP address of one of the servers
with kubectl get nodes -o wide. Then access the site and
install it.

Save a File and observe it

If you want to manually verify the NFS share is working, you
can log into your NFS server andmonitor the NFS folder, then
log into Drupal and create an Article, uploading an image to
the Body field of that article.

After you save the newArticle, you should a new image inside
the shared Drupal files directory the NFS client provisioner
created in the NFS share. Fancy!

Scale Drupal up… and down!

One quick way to test how many requests you can serve on
a Drupal site is to use the ‘ApacheBench’ tool, and we can
benchmark how fast Drupal can serve its cached home page
with the single replica we have:

Chapter 5 - Scaling Drupal in k8s 50

1 ab -n 500 -c 10 http://45.79.40.239:32119/

(Substitute one of your node’s IP addresses and the Drupal
service NodePort in this command.)

On my test cluster, this process reported the site serving
around 80 requests per second. Not bad, but we could getmore
out of our cluster by scaling up Drupal!

So edit the Drupal deployment, setting replicas: 5:

1 kubectl edit deployment -n drupal

Then wait for the Deployment to report being up to date with
five running instances:

1 watch kubectl get deployment -n drupal drupal

Because our persistent NFS storage allows multiple Pods to
mount the same volume, the Drupal deployment now success-
fully scales up to five instances! Hit Ctrl-C to stop watching
the deployment, and run ApacheBench again:

1 ab -n 500 -c 10 http://45.79.40.239:32119/

As the caches warm up, the requests per second should go up
a bit, since the load can be more evenly distributed to multiple
Drupal instances.

If you set the deployment back to replicas: 1, the requests
per second will likely go right back down to the original value.

Chapter 5 - Scaling Drupal in k8s 51

Use Horizontal Pod Autoscaling
(HPA)

One of the often-touted features of Kubernetes is automatic
scaling. What people probably don’t tell you is that, as with
all things in life, nice things like autoscaling are not free. You
usually have to configure the cluster and your applications to
make autoscaling actually work.

Set up metrics-server

Many cluster environments do not include an essential com-
ponent the Horizontal PodAutoscaler (HPA) relies on, namely
the metrics-server component.

metrics-server monitors resource usage in the cluster for
pods and nodes and aggregates the data in Kubernetes’ API.

To install it manually, run:

1 helm repo add bitnami https://charts.bitnami.com/bi\

2 tnami

3 helm install -f values/metrics-server.yml metrics-s\

4 erver bitnami/metrics-server

5 And to make sure it's actually working, run kubectl\

6 top node and you should see something like the fol\

7 lowing:

8

9 $ kubectl top node

10 NAME CPU(cores) CPU% M\

11 EMORY(bytes) MEMORY%

12 lke15196-18570-5fd9222ff4ff 112m 5% 9\

13 56Mi 24%

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Chapter 5 - Scaling Drupal in k8s 52

14 lke15196-18570-5fd9222ffd28 92m 4% 8\

15 86Mi 23%

16 lke15196-18570-5fd92230054d 75m 3% 8\

17 39Mi 21%

Note: See the article How Can I Deploy the
Kubernetes-Metrics Server on LKE? for more
details on metrics-server on Linode in particular.

Configuring HPA for Drupal

You can create an autoscaling configuration using kubectl just
like other resources:

1 kubectl autoscale -n drupal deployment drupal --min\

2 =1 --max=8 --cpu-percent=50

As with the Drupal deployment itself, it’s best long-term to
save the HPA configuration in a YAML manifest, so you
aren’t manually running commands to configure things in
your cluster. But for now, it’s easy enough to demonstrate
how an HPA works using kubectl.

Now you can monitor the status of the HPA you just created
with:

1 watch kubectl get hpa -n drupal

But if you just sit andwatch it, it’s not likely anything exciting
will happen, because Drupal is running pretty much idle.

You can also monitor, in a separate window, the current CPU
and Memory usage of the Drupal pods, with:

https://www.linode.com/community/questions/19756/how-can-i-deploy-the-kubernetes-metrics-server-on-lke
https://www.linode.com/community/questions/19756/how-can-i-deploy-the-kubernetes-metrics-server-on-lke

Chapter 5 - Scaling Drupal in k8s 53

1 watch kubectl top pods -n drupal -l app=drupal

Testing HPA for Drupal

To quickly create a lot of load on a Drupal site, there’s no
better way than hammering the Module admin page as an
authenticated user.

Log into the Drupal site, and view the session cookie that is
set by the site. Copy out the cookie name (starts with SESS)
and the value (a random string), then paste them into the
following ab command, which requires Apache Bench to be
installed on your computer. Put in the correct IP address and
NodePort for your Drupal deployment, and run the command:

1 ab -n 1000 -c 3 -C "session_cookie_name=key" http:/\

2 /45.79.40.239:32119/admin/modules

It may take a couple minutes for the Kubernetes’ HPA to
catch up, because it tries to not be too agressive, but it should
eventually kick off eight pods that will help handle the insane
amount of load you just put on your cluster.

After the requests are complete, Kubernetes will wait for a
preset cooldown period of time before it starts removing Pods,
and this is to prevent thrashing, which could happen if the
scaling were done too quickly.

That’s why there’s always going to be some lag between
traffic and autoscaling. Autoscaling is NOT going to mag-
ically solve your scalability problems, and we’ve also only
configured it, at this point, for the application layer—not the
database, or any other services Drupal might rely on!

Chapter 5 - Scaling Drupal in k8s 54

NOTE: The cooldown delay period is only config-
urable on the cluster level, and is not usually con-
figurable in managed Kubernetes environments.
There are alternative pod autoscalers with more
configurability, but their setup is outside the scope
of this lesson.

Scaling Databases

The last topic of this chapter is scaling databases.

And I have to share my advice that I’ve learned through
the course of building a number of production clusters, some
running less than ten applications, others running thousands
of applications.

Unless you love dealing with massive complexity and scal-
ing difficulty, I wouldn’t recommend trying to configure
traditional HA database configurations inside a Kubernetes
cluster.

What most people do—and I’ve done often—is rely on a cloud
provider’s database. For example:

• Amazon Aurora with Amazon EKS
• Google Cloud SQL for Google GKS
• DigitalOcean Managed MySQL for Kubernetes

The complex database scalability concerns are taken care of
by the cloud provider… but you do end up paying for it!

An alternative is to run single-Pod databases, without high
availability, for each application that needs one. Honestly, for
most of my own applications, I run a single-server database

Chapter 5 - Scaling Drupal in k8s 55

with good backups, and it’s reliable enough for many use
cases.

Running things inside Kubernetes in a similar fashion is just
as reliable, but could actually be more easily scalable through
Kubernetes own tools, depending on the servers you set up.

But running databases inside Kubernetes—even if you
use something like Vitess, Bitnami’s MariaDB Cluster Helm
Chart, or Presslabs’ MySQL Cluster Operator—is challenging.

The more complex the setup, and the higher the requirements,
the more you have to start considering things like:

• Using dedicated nodes for database Pod scheduling
• Ensuring database Pods have the correct taints and
tolerations to not end up on the same node

• Configuring specialized storage classes for higher-per-
formance data storage, or using on-instance high-speed
storage

• Configuring robust database backups and snapshotting

Unless your needs are lightweight, you might realize the
relatively high cost of cloud-managed databases is well worth
it when you switch to cloud-native infrastructure!

NOTE: Another option, if you are able to adapt
your applications, is to use a more ‘cloud-native’
database solution, like CockroachDB.

https://vitess.io/
https://engineering.bitnami.com/articles/deploy-a-production-ready-mariadb-cluster-on-kubernetes-with-bitnami-and-helm.html
https://engineering.bitnami.com/articles/deploy-a-production-ready-mariadb-cluster-on-kubernetes-with-bitnami-and-helm.html
https://www.presslabs.com/docs/mysql-operator/
https://github.com/cockroachdb/cockroach

Chapter 6 - DNS, TLS,
Cron, Logging

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

We’re going to take our scalable Drupal web application
and expose it to the Internet using a user-friendly domain
name and HTTPS using Ingress, and then configure cron and
logging using Kubernetes so it’s easy to keep Drupal running
it’s best!

Setting things up from Episode 5

Everything in this chapter builds on the scalable Drupal
configuration we set up in Chapter 5. You will need it running
to be able to set up everything in this chapter.

1. Deploy the nfs-server from Episode 5.
2. Create a Kubernetes cluster on Linode with at least 3

worker nodes.
3. Deploy nfs-client-provisioner into the Kubernetes clus-

ter:

Chapter 6 - DNS, TLS, Cron, Logging 57

1 helm repo add ckotzbauer https://ckotzbauer.github.\

2 io/helm-charts

3 helm install --set nfs.server=192.168.148.123 --set\

4 nfs.path=/home/nfs ckotzbauer/nfs-client-provision\

5 er --version 1.0.2 --generate-name

1. Deploy metrics-server into the Kubernetes cluster:

1 helm repo add bitnami https://charts.bitnami.com/bi\

2 tnami

3 helm install -f values/metrics-server.yml metrics-s\

4 erver bitnami/metrics-server

1. Deploy Drupal and MariaDB into the cluster:

1 cd k8s-manifests

2 kubectl create namespace drupal

3 kubectl apply -f mariadb.yml -f drupal.yml

DNS and Ingress setup for Drupal

Up to this point, we’ve been accessing Drupal using a Node-
Port, with the IP address of one of the servers and the assigned
port, like http://69.164.207.70:33214/.

Chapter 6 - DNS, TLS, Cron, Logging 58

But entering IP addresses and ports isn’t very useful for end
users.

It would be much better if we could use a friendly DNS name,
like ep6.kube101.jeffgeerling.com.

There are a few different ways to do this, and the easiest
would be to switch Drupal’s Service to a LoadBalancer, which
would provision a cloud load balancer—on Linode, a NodeBal-

Chapter 6 - DNS, TLS, Cron, Logging 59

ancer, or an ELB on AWS.

This is easy, but if you plan on deploying many sites and
publicly-accessible HTTP apps to your cluster, it can get
expensive fast, because each Load balancer will incur an
hourly or monthly fee.

So the preferred way to control DNS tying into backend

Chapter 6 - DNS, TLS, Cron, Logging 60

applications is to use what Kubernetes calls ‘Ingress’.

Instead of a Load Balancer per application, you set up one
Load Balancer for an Ingress Controller, which runs software
like Nginx, HAProxy, Traefik, or Envoy, and that Ingress
Controller proxies web requests to backend applications like
Drupal.

Set up an NGINX Ingress Controller

In this case, mostly because it’s the webserver and proxy I’m
most familiar with, I’m going to set up Nginx, and there’s
a simple Helm chart that sets up Nginx as a cluster Ingress
Controller:

1 helm repo add ingress-nginx https://kubernetes.gith\

2 ub.io/ingress-nginx

3 helm install ingress-nginx ingress-nginx/ingress-ng\

4 inx

Notice I mentioned “a” cluster Ingress Controller,
and not “the” cluster Ingress Controller? You can
have multiple Ingress Controllers in your cluster, if
you’d like!

Get the IP address of the nginx-ingress-controller using
the command:

1 kubectl get svc ingress-nginx-controller

Now go to your DNS provider, and add an A record pointing a
domain or subdomain at the “EXTERNAL-IP” address of the
Ingress Controller, for example:

Chapter 6 - DNS, TLS, Cron, Logging 61

1 ep6.kube101.jeffgeerling.com --> A 45.79.240.122

At this point, if you visit the URL, you’ll get a 404 Not Found
from Nginx (assuming everything was updated correctly and
the DNS change has propagated!).

Set up Ingress for Drupal

To connect the domain name to the Drupal backend, we need
to add an Ingress record that tells Nginx to route requests for
ep6.kube101.jeffgeerling.com to the drupal service on port
80.

And the k8s-manifests/drupal-ingress.yml file does just
that!

So go ahead and take a look at it, then deploy it into the cluster
with:

1 kubectl apply -f drupal-ingress.yml

After a few seconds, you should be able to access the site
(e.g. http://ep6.kube101.jeffgeerling.com/), and you should get
Drupal.

Much better now!

And since the Ingress is pointed at a Kubernetes Service in
front of three or more Drupal Pods, it will make sure all the
requests to Drupal are load-balanced for better scalability.

External DNS Integration

There are a few things relating to Ingress I won’t cover in this
101 book, and one of them that may be pertinent, depending

https://github.com/geerlingguy/kubernetes-101/blob/master/episode-06/k8s-manifests/drupal-ingress.yml

Chapter 6 - DNS, TLS, Cron, Logging 62

on your DNS provider, is integration between Kubernetes
and External DNS providers for easy DNS configuration for
Services.

The External DNS integration integrates Kubernetes with
a large number of external DNS providers, including AWS
Route 53, Google Cloud DNS, Linode DNS, CloudFlare, and
more. This makes it very easy to manage domain integration
into your Kubernetes apps, but it assumes you have your DNS
records configured in one of the supported services.

In the case of my example today, I used Name.com, which
does not have an API that integrates with Kubernetes, so I
wasn’t able to demonstrate External DNS.

Instead, I manually grabbed the IP address of the NodeBal-
ancer Linode provisioned for me, and added an A record in
Name.com’s frontend interface.

At a certain scale, managing DNSmanually is very inefficient!

Set up TLS with cert-manager and
Let’s Encrypt

Speaking of things hard to manage manually, most web
applications should be set up so they are secured using TLS
encryption, meaning you access them over encrypted HTTPS
and not via plaintext HTTP.

And the easiest way—and the way I have always set up my
own Kubernetes clusters—to configure certificates automati-
cally for your Ingress resources is to use cert-manager.

https://github.com/kubernetes-sigs/external-dns
https://cert-manager.io/

Chapter 6 - DNS, TLS, Cron, Logging 63

Most of the time I use it with Let’s Encrypt to get valid public
certificates, but you can also use cert-manager with many
other setups, including private CAs for internal applications,
depending on your needs.

Installing cert-manager is easy enough.

First, create a namespace:

Chapter 6 - DNS, TLS, Cron, Logging 64

1 kubectl create namespace cert-manager

Then install the CRDs (Custom Resource Definitions) for cert-
manager resources:

1 kubectl apply -f https://github.com/jetstack/cert-m\

2 anager/releases/download/v1.1.0/cert-manager.crds.y\

3 aml

Then add the jetstack Helm repository and install
cert-manager from Jetstack’s chart, into the cert-manager

namespace:

1 helm repo add jetstack https://charts.jetstack.io

2 helm install cert-manager jetstack/cert-manager -n \

3 cert-manager --version v1.1.0

Check that it’s running:

1 kubectl get pods -n cert-manager

Once it’s running, you’ll need to set up a ClusterIssuer inside
the cluster that will tie cert-manager to a CA service—in
our case, LetsEncrypt. Look at the configuration of the Clus-
terIssuer inside the k8s-manifests/cluster-issuer.yml file.
There are many other options you could choose, including us-
ing Let’s Encrypt’s staging environment for a non-production
cluster.

Create the letsencrypt-prod ClusterIssuer:

https://github.com/geerlingguy/kubernetes-101/blob/master/episode-06/k8s-manifests/cluster-issuer.yml

Chapter 6 - DNS, TLS, Cron, Logging 65

1 kubectl apply -f cluster-issuer.yml

Then deploy an updated Drupal Ingress manifest, which is
the same as the ingress resource added earlier, but with TLS
settings using the letsencrypt-prod ClusterIssuer we just
created:

1 kubectl apply -f drupal-ingress-tls.yml

It will take cert-manager a minute or two to perform it’s
HTTP01 challenge in the background. You can monitor
progress by viewing the cert-manager pod logs:

1 kubectl logs -f -n cert-manager -l app=cert-manager

Now you should be able to refresh the Drupal site in your
browser and see a secure connection, with a valid LetsEncrypt
certificate! (In my case, issued by DST Root CA X3 -> R3).

Keeping Drupal Happy with a
CronJob

Drupal is configured out of the box to use a special module,
called “Automated Cron”, that runs its internal maintenance
jobs on a regular cycle.

However, there is a downside to the way this works—it relies
on external web requests to operate.

Drupal waits until an a certain amount of time passes—by
default, 3 hours—and it waits for a web request to be made,

Chapter 6 - DNS, TLS, Cron, Logging 66

and then after it serves that request, it runs a cron job through
that same request cycle.

One problem is that you don’t have control over external web
requests, so if you want to run Drupal’s cron more frequently,
say every 5 minutes, you can’t rely on having steady traffic
at all hours of the day.

Another problem is this ties cron runs to a web process
that is tuned for external access performance, and might not
even have the resources to allow Drupal to complete all its
maintenance tasks efficiently.

Kubernetes has a solution in the form of a CronJob resource.
Kubernetes Jobs are one-off Pod definitions which run a Pod
to completion, keeping the log output for later inspection.

Kubernetes CronJobs are an efficient way of managing repet-
itive Jobs, like running Drupal’s cron on whatever schedule
you want.

I wrote an entire blog post on this topic in 2018: Running
Drupal Cron Jobs in Kubernetes, but I’ll dive into how to do
everything on our example Drupal site in this chapter.

Make sure the URL to the Drupal site’s cron URL is correct
(you can find this under Configuration > System > Cron)
inside k8s-manifests/drupal-cronjob.yml, then deploy the
CronJob into the cluster:

1 kubectl apply -f drupal-cronjob.yml

Then verify the CronJob exists in the Drupal namespace with:

https://www.jeffgeerling.com/blog/2018/running-drupal-cron-jobs-kubernetes
https://www.jeffgeerling.com/blog/2018/running-drupal-cron-jobs-kubernetes
https://github.com/geerlingguy/kubernetes-101/blob/master/episode-06/k8s-manifests/drupal-cronjob.yml

Chapter 6 - DNS, TLS, Cron, Logging 67

1 kubectl get cronjob -n drupal

After you see a Job run successfully (you can monitor cron-
triggered Jobs with kubectl get job -n drupal), check in
Drupal’s admin UI to make sure Cron runs are being detected.

There are a few things to be aware of when using Kubernetes
CronJobs:

1. The Successful and Failed Job History Limits allow you
to control how many Jobs are kept before Kubernetes
prunes old Jobs, for both successful and failed runs. It
may be useful to increase these limits, especially if you
need to debug CronJob problems.

2. For most Jobs, it is a good idea to disable concurrency
using the ‘Forbid’ concurrency policy. But there are use
cases where you might want to change that to ‘Allow’
or ‘Replace’.

3. When you start hitting frequent Job failures, you could
run into some weird issues… at least I have in the past.
Sometimes I’ve had to re-create a CronJob to get it
to start running its schedule again after too many Job
failures in a row.

4. Beware of having too many Jobs on your cluster. If you
run hundreds of sites and have a CronJob for each, run-
ning every minute, this can overload your Kubernetes
control plane! See my 50,000 Kubernets Jobs for 50K
subscribers video for more on that!

Once you can verify the Kubernetes CronJob is running
Drupal’s cron successfully, it would be a good idea to disable
the now-redundant Automated Cron module in Drupal!

https://www.youtube.com/watch?v=O1iEBzY7-ok
https://www.youtube.com/watch?v=O1iEBzY7-ok

Chapter 6 - DNS, TLS, Cron, Logging 68

Monitoring Drupal’s Logs

Now, I had originally planned on showing a nice, simple
logging setup for Drupal that I could demo in a few minutes
in this chapter.

But logging is not rainbows and sunshine. It wasn’t easy to do
centralized logging with multiple servers before Kubernetes
was a thing, and it’s not easy with multiple containers inside
Kubernetes either.

I have to punt on this topic because dealing with logs—even
with one simple site—is not a quick and easy problem to solve.

Especially if you want to handle logs in a scalable and secure
manner!

That said, here are a few potential solutions that I have either
used in the past or think would be good for many use cases:

Using an External SaaS Log Aggregator

If you have the budget, this is going to be the easiest option.
Services like Sumo Logic, DataDog, and Elastic provide cloud
log aggregation, monitoring, and search dashboards.

They are relatively easy to set up, they have pre-made ingest
plugins available for most applications (e.g. DataDog Logs
HTTP for Drupal) and for Kubernetes itself, and they can
usually scale to thousands of applications without a hassle.

But they do cost a lot (usually). That’s the number one
downside, but for many companies, the ease of integration
and flexibility make it worthwhile.

https://www.sumologic.com/
https://www.datadoghq.com/product/log-management/
https://www.elastic.co/observability
https://www.drupal.org/project/datadog
https://www.drupal.org/project/datadog

Chapter 6 - DNS, TLS, Cron, Logging 69

Running your own ELK Stack

If you want to save on the costs of a hosted service, running
your own ELK stack is a perfectly reasonable option. Espe-
cially for smaller clusters (where you aren’t dealing in many
gigabytes of logs per day), it is not impossible to manage an
ELK stack with a small team.

However, maintenance is not free, and the Elastic stack (Elas-
ticsearch, Logstash, and Kibana) require an investment in
time to set up the stack, and maintain it.

And it’s not lightweight, either—in my experience I’ve had to
allocate a lot of resources to get an Elasticsearch cluster to run
well beyond one or twomedium-traffic sites dumping all their
log data, in addition to sometimes-noisy Kubernetes services.

Relying on a Service Mesh

So-called ‘Service Meshes’ like Istio or Google’s Anthos some-
times have their own logging integrations built-in.

I don’t typically recommend a Service Mesh layer on top of
a Kubernetes cluster, because I kind of see it like spraying a
firehose of ‘all the things’ on top of a cluster, and in reality,
you don’t necessarily need ‘all the things’ that a Service
Mesh provides (they sure add to your cluster operation costs
though!).

It’s often easier to inject specific sidecar containers—that is,
containers that run alongside your application containers in
the same Pod—to do specific purposes like extract log files or
stream specific data to or from your application.

Chapter 6 - DNS, TLS, Cron, Logging 70

Using your cloud provider’s solution

Many cloud providers have integrated logging in their plat-
form. You’re already paying for it (most likely), so why not
use it?

Some of the solutions are not as robust as the alternatives, but
the primary purpose for central logging is to be able to audit
your applications and identify problems, and the basics are
usually covered well.

This is one argument in favor of relying on hosting partners
who are invested in the software you are using—they can offer
deeper integration and insights into the apps you host with
them!

Chapter 7 - Hello,
Operator!

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

In this chapter, we’ll explore the concept of a Kubernetes
Operator, and how they allow you to manage applications
running in Kubernetes clusters more efficiently. We’ll also
talk about how you can build one on your own!

What are Operators?

As we’ve seen in the past few chapters, real-world applica-
tions like Drupal require a good deal of effort to deploy and
maintain in a Kubernetes cluster.

There are many application concerns we haven’t covered
in depth, like running updates on the database schema, or
performing routine operations outside of cron, like queue
management or data backups.

Sometimes you can plug other tools into your Kubernetes
cluster to solve some of these puzzles, but what if there was a
way to tell Kubernetes how to manage everything for you?

Chapter 7 - Hello, Operator! 72

Well there is, and that mechanism is an Operator.

We’re going to throw around a lot of Kubernetes
jargon in the next few paragraphs! Don’t worry if
the connections between all these things is crystal
clear yet. A few years into my own Kubernetes
journey, I’m constantly referencing documentation
to make sure I’m using the terms correctly!

The Concept

Much like a human operator, a Kubernetes Operator is tasked
with the management of a given application (or a whole
bunch of instances of that application) inside a cluster.

The operator knows how to deploy the app, how to update it,
and how to fix it if there are issues.

Digging down a couple layers into how Kubernetes works,
Kubernetes uses controllers running in the cluster to watch
the state of the cluster (watched resources), and make changes
until the cluster is in the state it desires.

An analogy from the Kubernetes documentation makes a
lot of sense here: a controller is like a thermostat. You set
a temperature on the thermostat, then thermostat works to

Chapter 7 - Hello, Operator! 73

inform the heating system (the Kubernetes cluster) gets to the
final state where that temperature is reached.

Operators are a standard way of building controllers for
CustomResources, extensions to the Kubernetes API beyond
the standard resources like Pods, Deployments, and Services.

In the context of this series, wewould probably consider build-
ing a Custom Resource Definition (CRD) named “HelloGo”,
or “Drupal”, and then we could build an Operator to Custom
Resources that conform to that CRD.

The Execution

So taking Drupal as an example, an Operator would have a
Custom Resource Definition.

This CRD defines the specification for individual Custom
Resources (CRs) of Drupal, and at a minimum, you’d probably
want to include data fields like:

• databaseEngine

• filePvcType

And anything else you might want to customize or tweak in
an instance of Drupal running inside your Kubernetes cluster.

Then you could create one ormore CustomResources of kind:
Drupal, and then the Operator would be called upon to create
them if they don’t exist, or manage them when any part of
the instance changes.

Chapter 7 - Hello, Operator! 74

As an example, if you set databaseEngine: aws_aurora, you
could write some logic in your Operator that makes sure a
database exists for the Drupal application in Amazon Aurora,
then connects the Drupal site to that database.

Alternatively, if you set databaseEngine: local_mariadb,
you could have the Operator ensure a MariaDB database
exists inside the Kubernetes cluster, and then connect the
Drupal site to that database.

What if you set up your Drupal site with aws_aurora, then
switched it to local_mariadb? Well, if you manage the site
via an Operator, you could even build logic into that Operator
to manage full database migrations!

The real power of managing applications like Drupal via
Operator—especially if you manage more than one instance—
is the ability to maintain the application deployment and
maintenance logic in the Operator, and control instances
with simple declarative YAML, just like other Kubernetes
primatives.

For example, compare the following hypothetical Drupal
Custom Resource to the longer examples used in chapters 4,

Chapter 7 - Hello, Operator! 75

5, and 6:

1 apiVersion: "drupal.example.com/v1"

2 kind: Drupal

3 metadata:

4 name: my-drupal-site

5 spec:

6 databaseEngine: local_mariadb

7 version: 1.2.3

8 filePvcType: efs

A lot simpler to manage! Now imagine you’re building a
platform that’s running 300 different Drupal sites. Would
you rather build the automation into one Operator that can
manage 300 instances, or have to build automation that runs
outside of Kubernetes to do the same thing?

Why not use an Operator?

There are some valid reasons for sticking with primatives,
especially if you don’t have more complex needs, like running
many instances of an application in one or more clusters.

In many cases, you might only need to run one instance of
an application or microservice, and it’s not something that
would benefit from an extra layer of automation.

Especially early on, when something is in development, it is
easier to iterate using Kubernetes resources directly, rather
than to build and maintain an Operator, which then manages
those resources for you.

And in some cases, Operators are just one extra layer of
automation that you might not want to maintain.

Chapter 7 - Hello, Operator! 76

Popular Kubernetes Operators

Even if you don’t build your own operator, though, there’s
a good chance you’ll end up using one or more in your
Kubernetes clusters.

Almost every cluster I’ve ever built needed Prometheus for
monitoring, and the standard way to install Prometheus and
Alertmanager in a Kubernetes cluster is to use the Prometheus
Operator.

There are many other operators available, like the [Argo CD
Operator(https://argocd-operator.readthedocs.io/en/latest/)
for deploying one of the most popular Continuous
Deployment tools in Kubernetes, or the OpenEBS Operator.

Operators aren’t really centrally visible, like Docker images
on Docker Hub, or Helm charts on Artifact Hub.

But there is one central location that’s aggregating a large
number of operators, and that’s OperatorHub.io.

Currently, OperatorHub lists almost 200 operators, but I know
there are hundreds more that aren’t listed there. Usually I find
them through a direct Google or GitHub search.

Some are better maintained than others, though. The only
way to get a good grasp on whether an existing operator is
right for you is to install it in a test cluster.

Build your own Operator

So what if there isn’t a good operator for the software you’re
running in your cluster? Or what if your application needs a
custom operator?

https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://docs.openebs.io/docs/next/installation.html#installation-through-kubectl
https://hub.docker.com/
https://artifacthub.io/
https://operatorhub.io/

Chapter 7 - Hello, Operator! 77

Early on, building an Operator required fairly deep knowl-
edge of the Go programming language and Kubernetes APIs,
but thanks to a lot of work by the community, there are now
a variety of ways you can build operators—even if you don’t
know Go at all!

The two main ways I’ve seen used for building operators are
Kubebuilder and the Operator SDK.

The main difference between them used to be that
Kubebuilder only helped build Go-based operators, requiring
knowledge of Go, whereas Operator SDK worked with Go,
Ansible, or Helm-based operators.

But in the past year, the Operator SDKupstreamed some of it’s
customizations into Kubebuilder, so Go-based operators built
by Kubebuilder and Operator SDK are practically identical.

Operator SDK is still the only easy way to build non-Go
operators with Ansible or Helm, though.

There are some other projects that help with building opera-
tors, or operator-like tooling, like KUDO, but I won’t cover
them in this chapter.

There are some tradeoffs if you’re not using Go to build
your operator with Operator SDK, though. The Operator SDK
shows a graph of ‘operator capability levels’, and this shows
different types of operators are better at different levels of
automation.

Helm-based operators are great for basic app install and
upgrades.

Ansible-based operators can also perform more app man-
agement, including metrics integrations, config management,
and external integrations.

https://github.com/kubernetes-sigs/kubebuilder
https://sdk.operatorframework.io/
https://kudo.dev/
https://sdk.operatorframework.io/docs/overview/#operator-capability-level

Chapter 7 - Hello, Operator! 78

Go-based operators can do everything, with the highest
amount of granularity and available performance tuning.

But Go-based operators are the most difficult to set up and
maintain if you don’t already know the Go programming
language. AndAnsible might bemore complex thanwhat you
require too, if you just want to be able to install and upgrade
many instances of your application via Helm.

Building an Operator with Operator SDK

Since I’m most familiar with Ansible, though, I’m going to
demonstrate building a custom operator in Ansible, using the
guide from the Operator SDK.

Installing Operator SDK

First, you need tomake sure Operator SDK is installed on your
system. As with everything else on my Mac, I use homebrew
to install it:

1 brew install operator-sdk

You can also download the release binary from GitHub if you
want.

Building an Ansible Operator

The first step to building an operator is to create a project
directory, and initialize an Operator SDK project inside:

Chapter 7 - Hello, Operator! 79

1 mkdir memcached-operator

2 cd memcached-operator

3 operator-sdk init --plugins=ansible --domain=exampl\

4 e.com

Next you need to create an API for Kubernetes with a role for
the API to run in the cluster:

1 operator-sdk create api --group cache --version v1 \

2 --kind Memcached --generate-role

Next you need to create an Ansible task to actually manage
a Memcached instance whenever a new Memcached Custom
Resource (CR) is added.

So open roles/memcached/tasks/main.yml—this is the task
file that is run when the Ansible Operator identifies a new
or changed resource. Add the following inside:

1 ---

2 - name: Manage a memcached deployment with {{ size \

3 }} replicas.

4 community.kubernetes.k8s:

5 definition:

6 kind: Deployment

7 apiVersion: apps/v1

8 metadata:

9 name: '{{ ansible_operator_meta.name }}-mem\

10 cached'

11 namespace: '{{ ansible_operator_meta.namesp\

12 ace }}'

13 spec:

14 replicas: "{{ size }}"

Chapter 7 - Hello, Operator! 80

15 selector:

16 matchLabels:

17 app: memcached

18 template:

19 metadata:

20 labels:

21 app: memcached

22 spec:

23 containers:

24 - name: memcached

25 command:

26 - memcached

27 - -m=64

28 - -o

29 - modern

30 - -v

31 image: "docker.io/memcached:1.4.36-al\

32 pine"

33 ports:

34 - containerPort: 11211

Next, modify the spec inside config/samples/cache_v1_-

memcached.yaml so it provides a custom size value for the
Ansible operator—and delete the existing foo: bar entry:

1 spec:

2 size: 3

To be complete, you should also set an Ansible role default
for the size variable in case the user didn’t set one, but I’m
skipping that step here.

The operator runs inside a container image, so before you can
start using the operator, you have to build the docker image

Chapter 7 - Hello, Operator! 81

and push it somewhere your Kubernetes cluster can pull it
from:

1 make docker-build docker-push IMG=ttl.sh/example-me\

2 mcached:1h

ttl.sh allows you to push ephemeral container im-
ages to a public repository for testing purposes.
Note that the image will be automatically removed
after an hour. For real-world usage, you should
push the operator image to a persistent registry!

Currently there’s a bug in the Operator SDK that
prevents the generated Makefile from working on
macOS Big Sur. The fix is to comment out the SHELL
line in the Makefile before building.

Running an Ansible Operator

First, make sure you have a Kubernetes cluster running some-
where to which you have access as a cluster-admin. The
easiest thing for testing is to use Kind or Minikube. In my
case, I’ll start up a Minikube cluster:

1 minikube start

Then, install the Operator’s CRD into the cluster:

1 make install

And finally, deploy the Operator into the cluster, so it can start
watching for custom resources:

https://ttl.sh/
https://github.com/operator-framework/operator-sdk/issues/4403

Chapter 7 - Hello, Operator! 82

1 make deploy IMG=ttl.sh/example-memcached:1h

After it’s deployed, you can check on the new operator
pod running in the cluster, which should be in the
memcached-operator-system namespace:

1 kubectl get pods -n memcached-operator-system

Once it’s Running, you can start deploying instances of your
application and the Operator will start managing them!

Create a CR, and let the Operator Operate!

Now deploy the Memcached Custom Resource sample modi-
fied earlier:

1 kubectl apply -f config/samples/cache_v1_memcached.\

2 yaml

And watch the Operator perform a ‘reconciliation’, making
sure the CR is in the proper state:

1 kubectl logs deployment.apps/memcached-operator-con\

2 troller-manager -n memcached-operator-system -c man\

3 ager

After you’re done, you can clean everything up by deleting
the CR, then un-deploying the operator and CRDs:

Chapter 7 - Hello, Operator! 83

1 kubectl delete -f config/samples/cache_v1_memcached\

2 .yaml

3 make undeploy

That example was fairly simple, but the idea is you can add
Ansible tasks to create whatever resources are necessary, man-
age connections between them, run necessary installation
or database update tasks, and keep things running correctly
whenever a change occurs in the cluster.

Any language, including Python or Rust!

Since Operators are basically Kubernetes Controllers that
interact with the Kubernetes API directly, you can write them
in any language.

Besides Go, Ansible, and Helm, there are also guides and
frameworks to assist with building a controller in Rust, or an
operator in Python using Kopf.

Conclusion

There are hundreds of Kubernetes Operators that you can
look at for inspiration. I even maintain a Drupal Operator
that could be used to manage multiple Drupal instances in
a cluster!

Operators are not the solution for every application, but
they do help in many ways, especially if you have a lot of
application lifecycle management to automate in a cluster, or
if you run many instances of an application.

http://technosophos.com/2019/08/07/writing-a-kubernetes-controller-in-rust.html
https://github.com/nolar/kopf
https://github.com/nolar/kopf
https://github.com/geerlingguy/drupal-operator

Chapter 8 - Kube, Meet
Pi

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

Now we’re going to get Kubernetes running on a bare metal
cluster of Raspberry Pis! Two of my favorite things, together
in one fun chapter!

Heavy Metal Kubernetes

For the most part, the production Kubernetes clusters I’ve
worked on were hosted in the cloud, where cloud vendors
operate the servers, storage, load balancers, and in most cases,
even the Kubernetes control plane itself, that schedules Pods
onto Nodes and manages the cluster.

This is very convenient for many applications, but there are
situations where Kubernetes is a good fit for your architecture,
but you needmore control over the cluster, more performance,
or more security (e.g. an ‘air-gapped’ cluster).

And in these cases, you’ll want to install Kubernetes on ‘bare
metal’.

Chapter 8 - Kube, Meet Pi 85

Bare metal is a fancy way of saying ‘a particular physical
server dedicated to one task.’ And in our case, that task is
operating as part of a Kubernetes cluster.

There are some things that can be more difficult to manage in
a bare-metal environment, including:

• Cluster networking
• High-availability for the Kubernetes control plane
• Storage backends
• External load balancing and network ingress
• Certificate management (especially on non-public net-
works)

Start with Training Wheels

And in my experience, the best way to learn how to do
something well is to start with the basics: in this case, find
the simplest, most inexpensive way to build a local bare metal
Kubernetes cluster.

My weapon of choice? The humble Raspberry Pi!

Chapter 8 - Kube, Meet Pi 86

Now, immediately I know you’re thinking a Raspberry Pi is
woefully underpowered with its mobile CPU, its maximum 8
GB of RAM, and its embarassingly slow microSD storage.

But what the Pi lacks in niceties it makes up for in size, energy
consumption, and teaching ability.

The Raspberry Pi makes for Compact
Clusters

Skeptics of Pi-based clusters suggest networking together a
pile of old laptops or cheap corporate thin-client desktops to
get more performance, more memory, and faster storage for
the same price.

Chapter 8 - Kube, Meet Pi 87

That’s definitely possible, but once you have three or more
nodes, you start to yearn for the efficiency of a single board
computer, especially combinedwith Power over Ethernet. Not
having to take up a couple square feet of real estate on your
desk or in a cabinet gives you the freedom to grab your entire
cluster with one hand.

Not being tied to four separate power adapters plugged
into four separate electrical outlets—plus an extra one for a
network switch—means you can quickly move your cluster
around as-needed. That’s especially true of the latest trend in
SBC clustering: cluster boards like the Turing Pi!

Chapter 8 - Kube, Meet Pi 88

In my experience, the simpler and smaller an educational tool
is, the more likely it comes out of my closet for some quick
testing or learning.

And this is to say nothing of the heat and noise that comes
out of a typical PC with a traditional X86 processor!

The Raspberry Pi sips energy, and keeps
its cool

And that leads me to another advantage of learning on a Pi.
Unless you’re running heavyweight apps full-tilt 24x7, the
Raspberry Pi is pretty easy to keep cool with either heat sinks
or a gentle slow fan blowing over the cluster.

Indeed, most of the cluster builds I’ve seen end up using either
passive cooling with an open case, or they have one large-ish
fan blowing over all the Pis quietly.

And the entire cluster—including a PoE switch—can operate
on less than 50W of power.

At idle, it sips less than 10W of power.

Chapter 8 - Kube, Meet Pi 89

When you’re running a Kubernetes cluster, you’re not going
to take advantage of sleep or hibernation, so running on old
laptops where those modes save a ton of power won’t help
you.

While raw power usage is lower on a cluster
of Pis, performance per watt is likely going to
be higher with even a few-generations-old Intel
or AMD CPU. But unless you are running in-
tense CPU-hungry applications, or recompiling
software on the cluster constantly, that’s not nec-
essarily going to result in better power efficiency
(over a longer term).

The Raspberry Pi teaches lessons about
scalability

Many developers today are running the latest processors, with
dozens of gigabytes of RAM and the fastest NVMe storage.
And often you get a budget to buy beefy cloud instances with
similar specs and multi-gigabit networking.

But there’s an old saying that reminds me of the importance
of starting small:

“Wax on. Wax off.”

Chapter 8 - Kube, Meet Pi 90

Just likeMr.Miyagi in The Karate Kid, I like to teach the lesson
that you build a foundation for advanced usage of complex
tools like Kubernetes by starting small, focusing on a first step,
perfecting your knowledge of that step, then moving on.

So start learning little things, with great constraints. In Kuber-
netes, you quickly learn lessons that will pay back in spades
later:

• Always add resource limits
• Monitor CPU and memory usage
• Optimize your applications so they don’t end up
thrashing—especially when you end up in situations
where your storage, networking, or compute resources
start going haywire.

And youmight be skeptical: “I have a budget of $50,000/month
for multiple 32 vCPU nodes with 64 GB of RAM and fast SSD-
backed storage!” I hear you say.

But if you can build an efficient cluster using nothing but
small Raspberry Pis, I guarantee your end users will appre-
ciate the incredible speed and scalability you can get when
you throw in a faster processor, faster networking, and faster

https://www.imdb.com/title/tt0087538/characters/nm0001552

Chapter 8 - Kube, Meet Pi 91

storage, plus the resilience of configuration that deals with
outages and slowdowns with aplomb.

ARM is not all sunshine and roses

That’s not to say everything is peachy when building on the
Raspberry Pi. It uses a 64-bit ARM processor, and the default
Pi OS is actually still 32-bit, meaning you’re starting out a
bit crippled, at least early in the 2020s, where Intel and AMD
processors still dominate the server landscape.

Through my four years building ARM-based Kubernetes clus-
ters, I have grown to hate—but immediately recognize—the
dreaded:

Exec format error.

This error would show up when the cluster would pull a
container image, try running it, and realize the image doesn’t
support the ARM architecture of the Pi.

Luckily there are four forces that have come together to make
this situation much more rare lately:

• Raspberry Pi OS is now available as a 64-bit beta, and
Canonical publishes a supported 64-bit build for Rasp-
berry Pi as well.

• Amazon’s less-expensive Graviton processors have en-
couraged more developers to build ARM-compatible
images.

• Apple’s M1 processor has proven the ARM architecture
has great performance and energy efficiency potential.

Chapter 8 - Kube, Meet Pi 92

• Tools like Docker’s Buildx make building multi-arch im-
ages (that work on ARM64, AMD64, and even PowerPC
or other more exotic architectures) much easier.

So this problem has become much less prevalent, though
there are still many popular and widely-used images that
stubbornly refuse to support multiple architectures (cough
MySQL cough).

When you run into these instances, you can either find an
alternative image or build one on your own; I’ve done both of
those things in support of my Rasbperry Pi Dramble cluster.

Installing a Kubernetes
Distribution

So now that we’ve chosen to build a cluster on Raspberry Pis,
the next question is what flavor of Kubernetes?

In case you weren’t aware, there are actually a number of
different ‘distributions’ that maintain compatibility with the
Kubernetes API and are managed in a similar way, including:

• Kubernetes (K8s)
• MicroK8s (maintained by Canonical, the makers of
Ubuntu)

• K3s (maintained by Rancher)
• K0s (maintained by Marantis)
• OpenShift (maintained by Red Hat)

And these are not all, heck Docker even ships their own Ku-
bernetes-in-a-box with every download of Docker Desktop.

https://microk8s.io/
https://k3s.io/
https://k0sproject.io/
https://www.openshift.com/

Chapter 8 - Kube, Meet Pi 93

But not all of these distributions are suitable for running on
the Raspberry Pi. For example, OpenShift requires at least 16
GB of RAM on master nodes, and from my own experience it
really wants 32 or more GB per controller.

Other distributions are focused on the ‘edge’ use case and
more minimalist requirements. For example, I ran K3s on a
Turing Pi cluster earlier this year, and those nodes only had 1
GB of RAM and 100 megabit networking.

Kubernetes itself is not lightweight, but it runs surprisingly
well if you have at least 2 GB of RAM on your Raspberry Pis.
It’s a little slower thanMicroK8s and K3s, but it is nice to learn
how to run the ‘full’ Kubernetes on a homelab built with Pis,
so that’s what we’re going to do here.

kubeadm

Now, we want to install Kubernetes—but how do we do it?

There are actually a number of ways to do that too, includ-
ing using pre-built automation like Kubespray or Kops, two
officially-sanctioned installers.

But themost direct way to install Kubernetes is using kubeadm,
which is described as:

a tool built to provide best-practice “fast paths”
for creating Kubernetes clusters. It performs the
actions necessary to get a minimum viable, secure
cluster up and running in a user friendly way.

There’s also the option of building a Kubernetes cluster the
hard way, but that is about a thousand times deeper than we
can go in a 101-level series!

https://www.openshift.com/
https://github.com/kubernetes/kops
https://github.com/kubernetes/kubeadm
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

Chapter 8 - Kube, Meet Pi 94

Anyways, I chose to build some light Ansible automation
around kubeadm to set a Kubernetes controller on one Rasp-
berry Pi, then configure the other three Raspberry Pis in my
cluster as nodes that are joined to the controller.

Setting up the Raspberry Pi
Dramble

And if you’re building a bare metal cluster, you’ll need to put
everything together yourself. Instead of going into a cloud
dashboard and clicking a plus button a few times, then ‘Go’,
you have to get your hands dirty and plug things together!

So first, let’s take a short pause and listen to the ASMR version
of the Raspberry Pi Dramble cluster assembly.

Okay, now that that’s out of the way, here’s a detailed build
video where I show how exactly I put together the Raspberry
Pi Dramble, my four-node Kubernetes cluster that’s set up
with kubeadm through an Ansible playbook, with NFS for
shared storage, and Traefik for ingress across all four nodes.

If youwant to build a cluster just like this, I’ve documented ev-
erything in excruciating detail on the website pidramble.com,
and the great thing is it’s easy to add as many nodes as you
want!

I even have some Sourcekit PiTray minis on hand now, so I
could add in nodes using the Compute Module in the same
footprint as my normal Pi 4 model B’s!

A lot of people ask me why I chose to build a cluster with
four nodes. Well, back when I had the cluster running on
Raspberry Pi 2’s, I actually had a 6-node cluster. But back

https://www.youtube.com/watch?v=M6zGntFBNw4
https://www.youtube.com/watch?v=M6zGntFBNw4
https://www.youtube.com/watch?v=C-vvccZhT_g
https://www.youtube.com/watch?v=C-vvccZhT_g
http://www.pidramble.com/
https://sourcekit.cc/#/

Chapter 8 - Kube, Meet Pi 95

then I had a cheap 8-port gigabit switch. With my new cluster,
I used power over ethernet, which means the switch is a lot
more expensive! My little four port PoE switch cost more than
$50, so I decided to trim the cluster size to 4 nodes instead of
doubling my budget for the switch and Pi PoE HATs.

Going Further

There are a few things I’m not covering in this chapter that
you’ll probably want to look into more deeply.

First of all, the setup I use in my Dramble cluster uses an
Ingress controller running on every node to sort out requests
to the Drupal site.

If you’re going to run more applications and you want true
load balancing at a higher level, like what you’d get with a
cloud service, you should look into MetalLB.

There’s a good article on setting it up on Raspberry Pi on
Opensource.com: Install a Kubernetes load balancer on your
Raspberry Pi homelab with MetalLB.

Second, the current configuration doesn’t include any
monitoring system, even though I set up pretty thorough
monitoring—including Pi CPU temperature monitoring—
using Prometheus and Grafana. To see how I did that, check
out my Raspberry Pi Cluster Episode 4, starting around the 5
minute mark.

Finally, I can’t wait for the Turing Pi 2 to be released. In my
review of the original Turing Pi, I noted that it is much easier
to set up and manage, hardware-wise, than a cluster of Pi 4
model B computers—but that the Compute Module 3+ is a far
cry from the Pi 4 generation.

https://metallb.universe.tf/
https://opensource.com/article/20/7/homelab-metallb
https://opensource.com/article/20/7/homelab-metallb
https://www.youtube.com/watch?v=IafVCHkJbtI
https://turingpi.com/v2/
https://www.jeffgeerling.com/blog/2020/raspberry-pi-cluster-episode-6-turing-pi-review

Chapter 8 - Kube, Meet Pi 96

The Turing Pi 2 will support the usually-twice-as-fast Com-
pute Module 4, which means you could have a single board
with four nodes and one Ethernet connection for the entire
setup, saving even more cabling and power hassle.

Other Guides

It seems like building a Raspberry Pi Kubernetes cluster is a
hot topic, since you’ll find hundreds of guides to do it with
any Kubernetes distribution if you search it on the web.

The Raspberry Pi Dramble’s heritage dates back to 2014, when
it was originally a discrete cluster of separate nodes running
different applications, but it has evolved as cloud computing
itself has evolved, and it’ll be interesting to see how I canmake
it better as the clustering world moves on to newer and better
things.

Chapter 9 - Secrets and
Configuration

This chapter is still being translated from my
rough notes and episode content from the Ku-
bernetes 101 video series. Until this notice is
removed, be aware there may be some grammar
errors and gaps in certain portions.

Please stand by as this chapter is translated from my notes.
Sorry for the absence of any content so far!

Chapter 10 -
Monitoring Kubernetes
In the entire Kubernetes 101 series, I’ve avoided cluster visual-
ization tools and abstractions, mostly because I find learning
the basics, like the command line interface and basic architec-
ture, is better to do before you start throwing in abstraction
layers.

Once you’ve learned the basic architecture, the visualizations
make more sense.

It’s useful to have abstracted visualizations of the cluster and
resource consumption, because we, the operators of these
clusters, are humans, and our brains often need visual cues
to help us identify anomalies or monitor the overall state of
our applications.

In this chapter, I’ll cover three tools I’ve found essential to
monitoring production Kubernetes clusters.

Lens is billed as an ‘IDE’ for Kubernetes development, but
I think of it as a handy dashboard, one that’s easier to use
than the traditional web-based dashboards Kubernetes has
included.

Prometheus is a metrics monitoring tool, and is the de
facto standard for monitoring system metrics in Kubernetes
clusters.

Grafana was originally forked from Kibana 3, but is de-
veloped with a focus on real-time metrics monitoring dash-

https://k8slens.dev/
https://prometheus.io/
https://grafana.com/oss/grafana/

Chapter 10 - Monitoring Kubernetes 99

boards. Most of the fancy-looking monitoring dashboards
you’ve seen in Kubernetes screenshots are built with Grafana.
The CNCF even uses Grafana to plot out project activity.

Lens is often used by individual Kubernetes developers, and
can even be used by other members of a team to inspect
deployments and explore application logs, following the per-
missions they have in the cluster.

Prometheus and Grafana are often used together to gather
cluster and custom application metrics, and display them in
user-friendly dashboards.

Two Clusters to Monitor

To help with the examples in this chapter, I recommend
creating two Kubernetes clusters:

1. A local Minikube cluster following the example from
chapter 1, with a kubeconfig file in ∼/.kube/config.

2. A Linode Kubernetes Engine cluster running Drupal,
following the example from chapters 4, 5 and 6, with
a kubeconfig file in ∼/.kube/linode.yaml.

Cluster Visibility with Lens

If you work with multiple clusters, managing context in the
command line with kubectl can get annoying.

Luckily, the open source Lens app, available for Mac, Win-
dows, or Linux, makes it easier to browse multiple clusters
and dig into any resource you have the permission to manage.

https://k8s.devstats.cncf.io/d/12/dashboards?orgId=1&from=now-7d&to=now-1h&refresh=15m
https://k8slens.dev/

Chapter 10 - Monitoring Kubernetes 100

Lens was originally created by a team at Kontena, but after
acquiring Kontenta in early 2020, Mirantis also acquired
ownership of the Lens app later in 2020.

The app’s source is still maintained under the MIT license,
though, so I wouldn’t worry about the license being swapped
like some other vendors have done recently.

Install Lens

The easiest way to get Lens is to download a binary from the
Lens website, at https://k8slens.dev.

OnmyMac, I prefer to install things via Homebrew if possible,
and Lens is available as a cask, so I can install it with:

$ brew install --cask lens

Lens is also available as a Snap for Linux.

Inspect your clusters with Lens

Once installed, you can open Lens and start adding clusters.

Click the ‘+’ icon, and browse to a kubeconfig file. I added
two clusters:

1. Local Minikube
• kubeconfig: ∼/.kube/config
• context: minikube

2. Linode cluster
• kubeconfig: ∼/.kube/linode.yaml
• context: lke18701-ctx (will vary)

After adding both clusters, I was able to see node information
and browse all the resources in the cluster.

https://k8slens.dev/

Chapter 10 - Monitoring Kubernetes 101

Explore Pod Logs

One of my favorite features of Lens is the ability to jump into
any Pod’s logs quickly through the UI.

If you go to the Workloads > Pods section, and select any
Pod, you can click on the ‘Logs’ icon, and choose any of the
containers in that Pod, to see it’s logs.

While viewing the logs, you can switch containers, show
timestamps (for containers that don’t log timestamps in their
own output), and even save the log file locally for deeper
inspection or archive.

Log into Nodes and Pods

Another handy feature is the ability to log into any Kuber-
netes Node or Pod to which you have access.

Chapter 10 - Monitoring Kubernetes 102

WAIT WHAT!? You may ask… how can Lens
allow users to log into a Node?

Well, if you didn’t know this already, prepare
for your mind to be blown: if you give someone
admin privileges in a typical Kubernetes cluster,
that user will be able to use Linux kernel names-
pace features to manage the nodes themselves as
root.

This is a feature, not a bug, though there are
more attempts lately to run Kubernetes in a more
locked-down fashion.

But the mechanism Lens uses is fairly simple:
when you request shell access to a Node, it runs
a Pod on that node with privileged access, and
runs the command nsenter -t 1 -m -u -i -n

sleep 14000, thereby allowing that Pod to access
resources on the node as root.

Read up on Pod Security Policies to learn about
one way to mitigate attack vectors through privi-
leged Pods.

If you weren’t strict about granting admin-level
access in your clusters before, you should prob-
ably think about being more strict! Anybody
with that level of access effectively has root-level
access to all nodes in your cluster.

You can visit any Node or Pod, and click the ‘Node shell’ or
‘Pod shell’ icon to be dropped into a terminal session inside
that Node or Pod.

One major caveat: if the container you’re logging into is
running a minimal base image like Alpine or Scratch, it might
not have a full-fledged interactive shell environment (like

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Chapter 10 - Monitoring Kubernetes 103

bash), so the ability to debug anything inside the container
may be limited.

Visit web services in a browser

Another handy feature is the ability for Lens to automatically
create proxy connections between your cluster and your local
computer, so you can open web services in your browser.

Just find a service exposed in your cluster under Network
> Services, then click on the exposed TCP port. After a few
seconds, it should open up in your browser.

This is equivalent to running kubectl port-forward, but Lens
does all the magic for you.

Manage resources

You can edit any resource to which you have access by
clicking the ‘Edit’ icon. You can scale Deployments, you
can create new resources with the ‘+’ icon… and you can
even open up a Terminal session on your local computer
with kubectl configured and ready to go by clicking +, then
selecting ‘Terminal session’.

You might notice, however, that Lens shows a blank section
on the main Cluster overview, with the warning:

Metrics are not available due to missing or invalid
Prometheus configuration.

Wouldn’t it be nice to have those dashboards filled in, too?

While features like Horizontal Pod Autoscaling and kubectl

top require metrics-server to be running in your cluster, Lens

Chapter 10 - Monitoring Kubernetes 104

relies on Prometheus for metrics data, so now’s a good time
to install it.

Prometheus and Grafana

Prometheus was created at SoundCloud in 2012, when they
wanted to both simplify and scale their metrics monitoring
beyond what they could do with StatsD and Graphite.

The project’s governance was transferred to the CNCF in 2016,
and Prometheus became the second ‘CNCF graduated’ project
(after Kubernetes itself) in 2018.

Grafana is maintained by Grafana Labs, and has hundreds
of integrations that make it the most flexible open source
dashboard visualization and alerting tool. It doesn’t only
work with Prometheus, but most people looking for an open
source monitoring stack for Kubernetes use it along with
Prometheus.

Install Prometheus and Grafana using
Helm

For the past few years, an effort was made to build a ‘first
class’ out of the box experience for Kubernetes users integrat-
ing Prometheus and Grafana, and the fruit of that labor is
the kube-prometheus-stack Helm chart, based on the kube-
prometheus project.

This Helm chart installs the following in your cluster:

• Prometheus

https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus

Chapter 10 - Monitoring Kubernetes 105

• kube-state-metrics (gathers metrics from cluster
resources)

• Prometheus Node Exporter (gathers metrics from Kuber-
netes nodes)

• Grafana
• Grafana dashboards and Prometheus rules for Kuber-
netes monitoring

To install the Helm chart, first add the Prometheus Commu-
nity Helm repo and run helm repo update:

$ helm repo add prometheus-community https://promet\

heus-community.github.io/helm-charts

$ helm repo update

Then create a monitoring namespace and install the stack
inside:

$ kubectl create namespace monitoring

$ helm install prometheus --namespace monitoring pr\

ometheus-community/kube-prometheus-stack

Watch the progress in Lens, or via kubectl:

$ kubectl get deployments -n monitoring -w

Access Grafana

Once deployed, you can access Grafana using the default
admin account and the default password prom-operator.

The Grafana password is stored in the prometheus-grafana

secret, which you can view with the following command:

Chapter 10 - Monitoring Kubernetes 106

$ kubectl get secret -n monitoring prometheus-grafa\

na -o jsonpath="{.data.admin-password}" | base64 --\

decode ; echo

You can change the Grafana admin password via
the parameters passed to the Helm chart when
you install it. You should override this password
if you’re running Grafana in production!

To access Grafana in your browser, run:

$ kubectl port-forward -n monitoring service/promet\

heus-grafana 3000:80

Then open your browser and visit http://localhost:3000/
and log in with the password you found from the earlier
command.

But wait! If our cluster already has an Ingress Controller and
cert-manager (as it did at the end of chapter 6), it’s even
easier to access Grafana. You can add an Ingress resource
for Grafana just like we did for Drupal, and Nginx and cert-
manager will work in tandem to give you a nice, friendly URL
and TLS certificate for HTTPS access.

Create an ingress manifest named grafana-ingress-tls.yml,
with the following contents:

Chapter 10 - Monitoring Kubernetes 107

1 ---

2 apiVersion: networking.k8s.io/v1

3 kind: Ingress

4 metadata:

5 name: grafana

6 namespace: monitoring

7 annotations:

8 kubernetes.io/ingress.class: nginx

9 cert-manager.io/cluster-issuer: letsencrypt-prod

10 spec:

11 tls:

12 - hosts:

13 - grafana.kube101.jeffgeerling.com

14 secretName: grafana-tls

15 rules:

16 - host: grafana.kube101.jeffgeerling.com

17 http:

18 paths:

19 - pathType: ImplementationSpecific

20 backend:

21 service:

22 name: prometheus-grafana

23 port:

24 number: 80

Apply it to the cluster with the command:

$ kubectl apply -f grafana-ingress-tls.yml

After a couple minutes, a cert should be acquired, and you
can access Grafana at a friendly, secure URL—in my example,
https://grafana.kube101.jeffgeerling.com/.

Chapter 10 - Monitoring Kubernetes 108

Grafana Dashboards

If you go to Dashboards > Manage, you’ll see a list of the
default dashboards that ship with the kube-prometheus-stack,
including a number of dashboards for Compute Resources,
Networking, and even Nodes.

Click on one of the dashboards (e.g. ‘Nodes’) to view the
dashboard, and you should see live data going back to the
time when Prometheus was installed.

The ‘Cluster’ dashboard is helpful for a quick overview of
which namespaces are consuming the most resources.

Maintaining Grafana

Grafana has a full fledged access control system, a plugin
system, custom dashboards, and more.

In that sense, it’s a stateful application, and like Drupal, care
must be taken if you want to persist your configuration and
data like user accounts.

It’s beyond the scope of this chapter, but if you are running
Grafana in a production environment, you should install the
monitoring stack with persistence enabled (the Grafana chart
uses a persistence.enabled parameter that is set to false by
default), and make sure you take backups or snapshots of the
persistent volume Grafana uses.

Conclusion

With Prometheus installed, you should also be able to see
cluster metrics in Lens now, though you may need to restart
the app before metrics start coming in.

Chapter 10 - Monitoring Kubernetes 109

Now that you have more insights into your cluster’s resource
usage, you can make decisions about how and when to
scale more easily, and also consider adding alerts either via
AlertManager or Grafana which can be delivered through
email, chat apps, or even services like PagerDuty.

Getting the right alerts set up for your own applications is
often a trial-and-error process. In my experience, applications
run differently on every cloud provider, and some elevated
metrics that are concerning on one provider might never be a
problem on another provider.

Don’t get too bogged down in using a tool like Lens, though.
Especially early on in your Kubernetes journey, a tool that
abstracts away the basic commands to manage cluster re-
sources can be detrimental to your actual understanding of
Kubernetes!

Afterword
You should be well on your way towards streamlined infras-
tructure management. Many developers and sysadmins have
been helped by this book, and many have even gone further
and contributed back to the book, in the form of corrections,
suggestions, and fruitful discussion!

Thanks to you for purchasing and reading this book, and a
special thanks to all those who have given direct feedback in
the form of corrections, PRs, or suggestions for improvement:

TODO: List of contributors goes here!

	Table of Contents
	Preface
	Who is this book for?
	Typographic conventions
	Please help improve this book!
	Current Published Book Version Information

	About the Author

	Introduction
	Examples Repository
	Other resources

	Chapter 1 - Hello, Kubernetes!
	Kubernetes Origins
	Is Kubernetes Right for You?
	Kubernetes Environments
	Instructions for Minikube
	Building the example Docker image

	Chapter 2 - Containers
	Why does Kubernetes use containers?
	Container History: Vendor Wars
	Docker, containerd, and runC
	rkt and CoreOS
	Kubernetes Container Runtime
	CRI-O
	Modern Container Runtime options

	How do you build a container? Docker vs Buildah
	Instructions for `Hello Go' app
	Build the `Hello Go' Docker container image
	Push the container image to a private Docker registry

	Chapter 3 - Deploying apps
	Creating a Linode Cluster for cloud-based testing
	Deploying Hello Go into Kubernetes
	Exposing the Hello Go App
	Scaling the Hello Go App
	Updating the Go App
	Rolling back the Deployment

	Chapter 4 - Real-world apps
	Installing Drupal on a Traditional LAMP server
	LAMP Server Setup for drupal

	Automating the Installation
	Installing Drupal on Kubernetes using Bitnami's Helm Chart
	Install Helm
	Install the Drupal Chart
	Exposing a LoadBalancer in Minikube
	Changing Chart Options
	Cleaning Up

	Drupal Directly in Kubernetes - Let's Do it [Mostly
	Deploying the Drupal Kubernetes Manifests

	Chapter 5 - Scaling Drupal in k8s
	Fixing the scalability issue with Drupal Pods
	Shared Storage Options
	Rook and Ceph
	NFS

	Set up an NFS server
	Reconfigure the Drupal PersistentVolumeClaim for NFS
	Set up NFS client provisioner in K8s
	Deploy Drupal and MySQL (MariaDB)
	Save a File and observe it

	Scale Drupal up… and down!
	Use Horizontal Pod Autoscaling (HPA)
	Set up metrics-server
	Configuring HPA for Drupal
	Testing HPA for Drupal

	Scaling Databases

	Chapter 6 - DNS, TLS, Cron, Logging
	Setting things up from Episode 5
	DNS and Ingress setup for Drupal
	Set up an NGINX Ingress Controller
	Set up Ingress for Drupal
	External DNS Integration

	Set up TLS with cert-manager and Let's Encrypt
	Keeping Drupal Happy with a CronJob
	Monitoring Drupal's Logs
	Using an External SaaS Log Aggregator
	Running your own ELK Stack
	Relying on a Service Mesh
	Using your cloud provider's solution

	Chapter 7 - Hello, Operator!
	What are Operators?
	The Concept
	The Execution
	Why not use an Operator?

	Popular Kubernetes Operators
	Build your own Operator
	Building an Operator with Operator SDK
	Any language, including Python or Rust!

	Conclusion

	Chapter 8 - Kube, Meet Pi
	Heavy Metal Kubernetes
	Start with Training Wheels
	The Raspberry Pi makes for Compact Clusters
	The Raspberry Pi sips energy, and keeps its cool
	The Raspberry Pi teaches lessons about scalability
	ARM is not all sunshine and roses

	Installing a Kubernetes Distribution
	kubeadm

	Setting up the Raspberry Pi Dramble
	Going Further
	Other Guides

	Chapter 9 - Secrets and Configuration
	Chapter 10 - Monitoring Kubernetes
	Two Clusters to Monitor
	Cluster Visibility with Lens
	Install Lens
	Inspect your clusters with Lens
	Explore Pod Logs
	Log into Nodes and Pods
	Visit web services in a browser
	Manage resources

	Prometheus and Grafana
	Install Prometheus and Grafana using Helm
	Access Grafana
	Grafana Dashboards
	Maintaining Grafana

	Conclusion

	Afterword

